The Vertical Metallicity Gradient of the Milky Way Disk: Transitions in [a/Fe] Populations


الملخص بالإنكليزية

Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Ways disk, and examined how this gradient varies for different [a/Fe] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the surveys consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the in situ structure, in contrast to previous analyses which are more limited in scope. This work does not pre-suppose a disk structure, whether composed of a single complex population or a distinct thin and thick disk component. The metallicity gradient is -0.243 +0.039 -0.053 dex/kpc for the sample as a whole, which we compare to various literature results. Each [a/Fe] subsample dominates at a different range of heights above the plane of the Galaxy, which is exhibited in the gradient found in the sample as a whole. Stars over a limited range in [a/Fe] show little change in median [Fe/H] with height. If we associate [a/Fe] with age, our consistent vertical metallicity gradients with [a/Fe] suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star-formation processes and evolution.

تحميل البحث