ﻻ يوجد ملخص باللغة العربية
Clustering is the propensity of nodes that share a common neighbour to be connected. It is ubiquitous in many networks but poses many modelling challenges. Clustering typically manifests itself by a higher than expected frequency of triangles, and this has led to the principle of constructing networks from such building blocks. This approach has been generalised to networks being constructed from a set of more exotic subgraphs. As long as these are fully connected, it is then possible to derive mean-field models that approximate epidemic dynamics well. However, there are virtually no results for non-fully connected subgraphs. In this paper, we provide a general and automated approach to deriving a set of ordinary differential equations, or mean-field model, that describes, to a high degree of accuracy, the expected values of system-level quantities, such as the prevalence of infection. Our approach offers a previously unattainable degree of control over the arrangement of subgraphs and network characteristics such as classical node degree, variance and clustering. The combination of these features makes it possible to generate families of networks with different subgraph compositions while keeping classical network metrics constant. Using our approach, we show that higher-order structure realised either through the introduction of loops of different sizes or by generating clustered networks based on different subgraphs, leads to significant differences in epidemic dynamics despite controlling for basic network metrics.
We study the spread of an SIRS-type epidemic with vaccination on network. Starting from an exact Markov description of the model, we investigate the mean epidemic lifetime by providing a sufficient condition for fast extinction that depends on the mo
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho
We first generalise ideas discussed by Kiss et al. (2015) to prove a theorem for generating exact closures (here expressing joint probabilities in terms of their constituent marginal probabilities) for susceptible-infectious-removed (SIR) dynamics on
Mean-field analysis is an important tool for understanding dynamics on complex networks. However, surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and this is particularly true for real-world
This paper studies Mean Field Games with a common noise given by a continuous time Markov chain under a Quadratic cost structure. The theory implies that the optimal path under the equilibrium is a Gaussian process conditional on the common noise. In