ﻻ يوجد ملخص باللغة العربية
We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution when the interaction between the two distinct species is suddenly switched on (quenched). We examine the behavior of the densities, the entanglement, the Loschmidt echo and the spectral function for a large range of inter-species interactions and find that even in such small systems evidence of Andersons orthogonality catastrophe can be witnessed.
A remarkable feature of quantum many-body systems is the orthogonality catastrophe which describes their extensively growing sensitivity to local perturbations and plays an important role in condensed matter physics. Here we show that the dynamics of
We monitor the correlated quench induced dynamical dressing of a spinor impurity repulsively interacting with a Bose-Einstein condensate. Inspecting the temporal evolution of the structure factor three distinct dynamical regions arise upon increasing
The probability that a particle will stick to a surface is fundamental to a variety of processes in surface science, including catalysis, epitaxial growth, and corrosion. At ultralow energies, how particles scatter or stick to a surface affects the p
The efficiency of extracting single atoms or molecules from an ultracold bosonic reservoir is theoretically investigated for a protocol based on lasers, coupling the hyperfine state in which the atoms form a condensate to another stable state, in whi
We propose to investigate the full counting statistics of nonequilibrium spin transport with an ultracold atomic quantum gas. The setup makes use of the spin control available in atomic systems to generate spin transport induced by an impurity atom i