ترغب بنشر مسار تعليمي؟ اضغط هنا

The hot core towards the intermediate mass protostar NGC7129 FIRS 2: Chemical similarities with Orion KL

122   0   0.0 ( 0 )
 نشر من قبل Asuncion Fuente
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 7129 FIRS 2 (hereafter FIRS 2) is an intermediate-mass (2 to 8 Msun) protostar located at a distance of 1250 pc. High spatial resolution observations are required to resolve the hot core at its center. We present a molecular survey from 218200 MHz to 221800 MHz carried out with the IRAM Plateau de Bure Interferometer. These observations were complemented with a long integration single-dish spectrum taken with the IRAM 30m telescope. We used a Local Thermodynamic Equilibrium (LTE) single temperature code to model the whole dataset. The interferometric spectrum is crowded with a total of ~300 lines from which a few dozens remain unidentified yet. The spectrum has been modeled with a total of 20 species and their isomers, isotopologues and deuterated compounds. Complex molecules like methyl formate (CH3OCHO), ethanol (CH3CH2OH), glycolaldehyde (CH2OHCHO), acetone (CH3COCH3), dimethyl ether (CH3OCH3), ethyl cyanide (CH3CH2CN) and the aGg conformer of ethylene glycol (aGg-(CH2OH)_2) are among the detected species. The detection of vibrationally excited lines of CH3CN, CH3OCHO, CH3OH, OCS, HC3N and CH3CHO proves the existence of gas and dust at high temperatures. In fact, the gas kinetic temperature estimated from the vibrational lines of CH3CN, ~405 K, is similar to that measured in massive hot cores. Our data allow an extensive comparison of the chemistry in FIRS~2 and the Orion hot core. We find a quite similar chemistry in FIRS 2 and Orion. Most of the studied fractional molecular abundances agree within a factor of 5. Larger differences are only found for the deuterated compounds D2CO and CH2DOH and a few molecules (CH3CH2CN, SO2, HNCO and CH3CHO). Since the physical conditions are similar in both hot cores, only different initial conditions (warmer pre-collapse phase in the case of Orion) and/or different crossing time of the gas in the hot core can explain this behavior.



قيم البحث

اقرأ أيضاً

243 - D. Johnstone , M. Fich , C. McCoey 2010
HERSCHEL-HIFI observations of water from the intermediate mass protostar NGC7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four H216O and two H218O lines, were observed and all but one H218O line were detected. The four H2 16 O lines discussed here share a similar morphology: a narrower, approx 6 km/s, component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, approx 25 km/s component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to approx 10-7 for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be approx 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J.
Aims: We present preliminary results of the first Herschel spectroscopic observations of NGC7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods: The PACS instrument was used in line spectroscopy mode (R=1000-5000) with 15 spectral bands between 63 and 185 microns. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results: Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions: It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks.
257 - A. Fuente , P. Caselli , C. McCoey 2012
NGC 7129 FIRS 2 is a young intermediate-mass (IM) protostar, which is associated with two energetic bipolar outflows and displays clear signs of the presence of a hot core. It has been extensively observed with ground based telescopes and within the WISH Guaranteed Time Herschel Key Program. We present new observations of the C18O 3-2 and the HDO 3_{12}-2_{21} lines towards NGC 7129 FIRS 2. Combining these observations with Herschel data and modeling their emissions, we constrain the C18O and HDO abundance profiles across the protostellar envelope. In particular, we derive the abundance of C18O and HDO in the hot core. The intensities of the C18O lines are well reproduced assuming that the C18O abundance decreases through the protostellar envelope from the outer edge towards the centre until the point where the gas and dust reach the CO evaporation temperature (~20-25 K) where the C18O is released back to the gas phase. Once the C18O is released to the gas phase, the modelled C18O abundance is found to be ~1.6x10^{-8}, which is a factor of 10 lower than the reference abundance. This result is supported by the non-detection of C18O 9-8, which proves that even in the hot core (T_k>100 K) the CO abundance must be 10 times lower than the reference value. Several scenarios are discussed to explain this C18O deficiency. One possible explanation is that during the pre-stellar and protostellar phase, the CO is removed from the grain mantles by reactions to form more complex molecules. Our HDO modeling shows that the emission of HDO 3_{12}-2_{21} line is maser and comes from the hot core (T_k>100 K). Assuming the physical structure derived by Crimier et al. (2010), we determine a HDO abundance of ~0.4 - 1x10^{-7} in the hot core of this IM protostar, similar to that found in the hot corinos NGC 1333 IRAS 2A and IRAS 16293-2422.
312 - Luis A. Zapata 2010
We present sensitive high angular resolution submillimeter and millimeter observations of torsionally/vibrationally highly excited lines of the CH$_3$OH, HC$_3$N, SO$_2$, and CH$_3$CN molecules and of the continuum emission at 870 and 1300 $mu$m from the Orion KL region, made with the Submillimeter Array (SMA). These observations plus recent SMA CO J=3-2 and J=2-1 imaging of the explosive flow originating in this region, which is related to the non-hierarchical disintegration of a massive young stellar system, suggest that the molecular Orion Hot Core is a pre-existing density enhancement heated from the outside by the explosive event -- unlike in other hot cores we do not find any self-luminous submillimeter, radio or infrared source embedded in the hot molecular gas. Indeed, we do not observe filamentary CO flow structures or fingers in the shadow of the hot core pointing away from the explosion center. The low-excitation CH$_3$CN emission shows the typical molecular heart-shaped structure, traditionally named the Hot Core, and is centered close to the dynamical origin of the explosion. The highest excitation CH$_3$CN lines are all arising from the northeast lobe of the heart-shaped structure, {it i. e.} from the densest and most highly obscured parts of the Extended Ridge. The torsionally excited CH$_3$OH and vibrationally excited HC$_3$N lines appear to form a shell around the strongest submillimeter continuum source. Surprisingly the kinematics of the Hot Core and Compact Ridge regions as traced by CH$_3$CN and HC$_3$N also reveal filament-like structures that emerge from the dynamical origin. All of these observations suggest the southeast and southwest sectors of the explosive flow to have impinged on a pre-existing very dense part of the Extended Ridge, thus creating the bright Orion KL Hot Core.
We present Submillimeter Array (SMA) observations at 345 GHz towards the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemist ry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern towards the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km/s, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with MHD simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (~0.1 pc) of NGC 6334 V towards the higher-density hot core region (~0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا