ﻻ يوجد ملخص باللغة العربية
Under the hypothesis that the MSSM neutralino accounts for the observed dark matter density, we investigate how light this particle is still allowed to be after the latest LHC data. In particular, we discuss the impact of searches for events with multiple taus and missing transverse momentum, which are a generic prediction of the light neutralino scenario.
We investigate the current status of the light neutralino dark matter scenario within the minimal supersymmetric standard model (MSSM) taking into account latest results from the LHC. A discussion of the relevant constraints, in particular from the d
Light neutralino dark matter can be achieved in the Minimal Supersymmetric Standard Model if staus are rather light, with mass around 100 GeV. We perform a detailed analysis of the relevant supersymmetric parameter space, including also the possibili
It was shown in a previous study that a lightest neutralino with mass below 30 GeV was severely constrained in the minimal supersymmetric standard model (MSSM), unless it annihilates via a light stau and thus yields the observed dark matter abundance
In spite of rapid experimental progress, windows for light superparticles remain. One possibility is a ~100 GeV tau slepton whose t-channel exchange can give the correct thermal relic abundance for a relatively light neutralino. We pedagogically revi
We systematically study models with light scalar and pseudoscalar dark matter candidates and their potential signals at the LHC. First, we derive cosmological bounds on models with the Standard Model Higgs mediator and with a new weak-scale mediator.