ترغب بنشر مسار تعليمي؟ اضغط هنا

Timing Studies on X-Per and Discovery of its Transient QPO Feature

189   0   0.0 ( 0 )
 نشر من قبل S. Cagdas Inam
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. Acuner




اسأل ChatGPT حول البحث

We present timing analysis of {emph{RXTE}}-PCA and {emph{INTEGRAL}}-ISGRI observations of X Per between 1998 and 2010. All pulse arrival times obtained from the {emph{RXTE}}-PCA observations are phase connected and a timing solution is obtained using these arrival times. We update the long-term pulse frequency history of the source by measuring its pulse frequencies using {emph{RXTE}}-PCA and {emph{INTEGRAL}}-ISGRI data. From the {emph{RXTE}}-PCA data, the relation between frequency derivative and X-ray flux suggests accretion via the companions stellar wind. On the other hand, detection of the transient QPO feature peaking at $sim 0.2$ Hz suggests the existence of an accretion disc. We find that double break models fit the average power spectra well, which suggests that the source has at least two different accretion flow components dominating the overall flow. From the power spectrum of frequency derivatives, we measure a power law index of $sim -1$ which implies that on short time scales disc accretion dominates over noise, while on time scales longer than the viscous time scales the noise dominates. From pulse profiles, we find a correlation between pulse fraction and count rate of the source.



قيم البحث

اقرأ أيضاً

We report results from joint NuSTAR, Swift and XMM-Newton observations of the newly discovered black hole X-ray binary candidate Swift J1658.2-4242 in the intermediate state. We observe a peculiar event in this source, with its X-ray flux rapidly dec reasing by $sim$45% in $sim$40~s, accompanied by only subtle changes in the shape of the broadband X-ray spectrum. In addition, we find a sudden turn-on of a transient QPO with a frequency of $6-7$~Hz around the time of the flux change, and the total fractional rms amplitude of the power spectrum increases from $sim$2% to $sim$10%. X-ray spectral and timing analyses indicate that the flux decrease is driven by intrinsic changes in the accretion flow around the black hole, rather than intervening material along the line of sight. In addition, we do not significantly detect any relativistic disk reflection component, indicating it is much weaker than previously observed while the source was in the bright hard state. We propose accretion disk instabilities triggered at a large disk radius as the origin of the fast transition in spectral and timing properties, and discuss possible causes of the unusual properties observed in Swift J1658.2-4242. The prompt flux variation detected along with the emergence of a QPO makes the event an interesting case for investigating QPO mechanisms in black hole X-ray binaries.
482 - C. Ng , M. Bailes , S. D. Bates 2014
We report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64-m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf compani ons. In addition, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017-7156. We discuss the case of PSR J1801-3210, which shows no significant period derivative after four years of timing data. Our best-fit solution shows a period derivative of the order of $10^{-23}$, an extremely small number compared to that of a typical MSP. However, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic period derivative is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801-3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in `very low-mass binary pulsars, implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely-related to the Galactic height distribution. Finally, we report on the first detection of PSRs J1543-5149 and J1811-2404 as gamma-ray pulsars.
143 - M.M. Serim 2021
We investigate timing and spectral characteristics of the transient X-ray pulsar 2S 1417$-$624 during its 2018 outburst with emph{NICER} follow up observations. We describe the spectra with high-energy cut-off and partial covering fraction absortion (PCFA) model and present flux-dependent spectral changes of the source during the 2018 outburst. Utilizing the correlation-mode switching of the spectral model parameters, we confirm the previously reported sub-critical to critical regime transitions and we argue that secondary transition from the gas-dominated to the radiation pressure-dominated disc do not lead to significant spectral changes below 12 keV. Using the existing accretion theories, we model the spin frequency evolution of 2S 1417$-$624 and investigate the noise processes of a transient X-ray pulsar for the first time using both polynomial and luminosity-dependent models for the spin frequency evolution. For the first model, the power density spectrum of the torque fluctuations indicate that the source exhibits red noise component ($Gamma sim -2$) within the timescales of outburst duration which is typical for disc-fed systems. On the other hand, the noise spectrum tends to be white on longer timescales with high timing noise level that indicates an ongoing accretion process in between outburst episodes. For the second model, most of the red noise component is eliminated and the noise spectrum is found to be consistent with a white noise structure observed in wind-fed systems.
84 - L. Sidoli 2020
We report on the results of a NuSTAR observation of the Supergiant Fast X-ray Transient pulsar IGRJ11215-5952 during the peak of its outburst in June 2017. IGRJ11215-5952 is the only SFXT undergoing strictly periodic outbursts, every 165 days. NuSTAR caught several X-ray flares, spanning a dynamic range of 100, and detected X-ray pulsations at 187.0 s, consistent with previous measurements. The spectrum from the whole observation is well described by an absorbed power-law (with a photon index of 1.4) modified, above 7 keV, by a cutoff with an e-folding energy of 24 keV. A weak emission line is present at 6.4 keV, consistent with Kalpha emission from cold iron in the supergiant wind. The time-averaged flux is 1.5E-10 erg/cm2/s (3-78 keV, corrected for the absorption), translating into an average luminosity of about 9E35 erg/s (1-100 keV, assuming a distance of 6.5 kpc). The NuSTAR observation allowed us to perform the most sensitive search for cyclotron resonant scattering features in the hard X-ray spectrum, resulting in no significant detection in any of the different spectral extractions adopted (time-averaged, temporally-selected, spin-phase-resolved and intensity-selected spectra). The pulse profile showed an evolution with both the energy (3-12 keV energy range compared with 12-78 keV band) and the X-ray flux: a double peaked profile was evident at higher fluxes (and in both energy bands), while a single peaked, sinusoidal profile was present at the lowest intensity state achieved within the NuSTAR observations (in both energy bands). The intensity-selected analysis allowed us to observe an anti-correlation of the pulsed fraction with the X-ray luminosity. The pulse profile evolution can be explained by X-ray photon scattering in the accreting matter above magnetic poles of a neutron star at the quasi-spherical settling accretion stage.
Rossi X-ray Timing Explorer (RXTE)/Proportional Counter Array (PCA) observations of IGR J19294+1816 covering two outburst episodes are reported. The first outburst happened during MJD 54921-54925 (2009 C.E.) and the second one happened during MJD 554 99-55507 (2010 C.E.). In both the cases the PCA observations were made during the decay phase of the outburst, with the source exhibiting temporal and spectral evolution with the change in flux. At the bright flux level an absorption feature at 35.5 keV is detected in the spectra which may be attributed to Cyclotron Resonance Scattering Feature corresponding to a magnetic field of B = 4.13*10^12 Gauss. This is also detected at a lower significance in two other observations. In addition an Fe line emission at 6.4 keV is prominently detected during the highest flux. X-ray pulsations are detected in 9 out of 10 observations; no pulsations were found in the observation with the lowest flux level. During this observation with the lowest flux the pulsation phenomenon becomes detectable only at the soft X-ray bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا