ﻻ يوجد ملخص باللغة العربية
Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.
Flavour symmetries have been used to constrain both quark and lepton mixing parameters. In particular, they can be used to completely fix the mixing angles. For the lepton sector, assuming that neutrinos are Majorana particles, we have derived the co
It has been suggested that residual symmetries in the charged-lepton and neutrino mass matrices can possibly reveal the flavour symmetry group of the lepton sector. We review the basic ideas of this purely group-theoretical approach and discuss some
The classification of lepton mixing matrices from finite residual symmetries is reviewed, with emphasis on the role of vanishing sums of roots of unity for the solution of this problem.
Contrary to the quark mixing matrix, the lepton mixing matrix could be symmetric. We study the phenomenological consequences of this possibility. In particular, we find that symmetry would imply that |U_{e3}| is larger than 0.16, i.e., above its curr
We investigate the possibility that the first column of the lepton mixing matrix U is given by u_1 = (2,-1,-1)^T/sqrt{6}. In a purely group-theoretical approach, based on residual symmetries in the charged-lepton and neutrino sectors and on a theorem