ﻻ يوجد ملخص باللغة العربية
A single crystal of isovalently substituted Ba(Fe$_{1-x}$Ru$_{x}$)$_2$As$_2$ ($x=0.24$) was sequentially irradiated with 2.5 MeV electrons up to a maximum dose of $2.1 times 10^{19}$ electrons/cm^2. The electrical resistivity was measured textit{in - situ} at $T=$22 K during the irradiation and textit{ex - situ} as a function of temperature between subsequent irradiation runs. Upon irradiation, the superconducting transition temperature, $T_c$, decreases and the residual resistivity, $rho_0$, increases. We find that electron irradiation leads to the fastest suppression of $T_c$ compared to other types of artificially introduced disorder, probably due to the strong short-range potential of the point-like irradiation defects. A more detailed analysis within a multiband scenario with variable scattering potential strength shows that the observed $T_c$ vs. $rho_0$ is fully compatible with $s_pm$ pairing, in contrast to earlier claims that this model leads to a too rapid a suppression of $T_c$ with scattering.
Single crystals of Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$, $x<0.37$, have been grown and characterized by structural, magnetic and transport measurements. These measurements show that the structural/magnetic phase transition found in pure BaFe$_2$As$_2$ at 1
Resistivity, Hall effect and magnetoresistance have been investigated systematically on single crystals of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ranging from undoped to optimally doped regions. A systematic evolution of the quasiparticle scattering has been ob
Using polarization-resolved electronic Raman scattering we study under-doped, optimally-doped and over-doped Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal fo
The Ru doping effect on the Dirac cone states is investigated in iron pnictide superconductors Ba(Fe$_{1-x}$Ru$_x$As)$_2$ using the transverse magnetoresistance (MR) measurements as a function of temperature. The linear development of MR against magn
The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor with Tc = 32K (BKFA) was determined from angle-resolved photoemission spectroscopy (ARPES) via fitting the distribution of the quasiparticle density to a m