ترغب بنشر مسار تعليمي؟ اضغط هنا

The simple classical groups of dimension less than 6 which are (2,3)-generated

164   0   0.0 ( 0 )
 نشر من قبل Marco Antonio Pellegrini
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we determine the classical simple groups of dimension r=3,5 which are (2,3)-generated (the cases r = 2, 4 are known). If r = 3, they are PSL_3(q), q <> 4, and PSU_3(q^2), q^2 <> 9, 25. If r = 5 they are PSL_5(q), for all q, and PSU_5(q^2), q^2 >= 9. Also, the soluble group PSU_3(4) is not (2,3)-generated. We give explicit (2,3)-generators of the linear preimages, in the special linear groups, of the (2,3)-generated simple groups.



قيم البحث

اقرأ أيضاً

In this paper we give explicit (2,3)-generators of the unitary groups SU_6(q^ 2), for all q. They fit into a uniform sequence of likely (2,3)-generators for all n>= 6.
The article deals with profinite groups in which the centralizers are abelian (CA-groups), that is, with profinite commutativity-transitive groups. It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CA-group . It is shown that G has a normal open subgroup N which is either abelian or pro-p. Further, a rather detailed information about the finite quotient G/N is obtained.
The article deals with profinite groups in which centralizers are virtually procyclic. Suppose that G is a profinite group such that the centralizer of every nontrivial element is virtually torsion-free while the centralizer of every element of infin ite order is virtually procyclic. We show that G is either virtually pro-p for some prime p or virtually torsion-free procyclic. The same conclusion holds for profinite groups in which the centralizer of every nontrivial element is virtually procyclic; moreover, if G is not pro-p, then G has finite rank.
For an element $g$ of a group $G$, an Engel sink is a subset $mathcal{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathcal{E}(g)$. We conjecture that if $G$ is a profinite group in which every element admits a sink that is a procyclic subgroup, then $G$ is procyclic-by-(locally nilpotent). We prove the conjecture in two cases -- when $G$ is a finite group, or a soluble pro-$p$ group.
In this paper we prove that the unitary groups $SU_n(q^2)$ are $(2,3)$-generated for any prime power $q$ and any integer $ngeq 8$. By previous results this implies that, if $ngeq 3$, the groups $SU_n(q^2)$ and $PSU_n(q^2)$ are $(2,3)$-generated, exce pt when $(n,q)in{(3,2),(3,3),(3,5),(4,2), (4,3),(5,2)}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا