ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

147   0   0.0 ( 0 )
 نشر من قبل Anais Rassat
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zeldovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.



قيم البحث

اقرأ أيضاً

Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole m oments with one another and with the motion and geometry of the Solar System, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary $Lambda$CDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.
The lack of power anomaly is an intriguing feature at the largest angular scales of the CMB anisotropy temperature pattern, whose statistical significance is not strong enough to claim any new physics beyond the standard cosmological model. We revisi t the former statement by also considering polarisation data. We propose a new one-dimensional estimator which takes jointly into account the information contained in the TT, TE and EE CMB spectra. By employing this estimator on Planck 2015 low-$ell$ data, we find that a random $Lambda$CDM realisation is statistically accepted at the level of $3.68 %$. Even though Planck polarisation contributes a mere $4 %$ to the total information budget, its use pushes the lower-tail-probability down from the $7.22 %$ obtained with only temperature data. Forecasts of future CMB polarised measurements, as e.g. the LiteBIRD satellite, can increase the polarisation contribution up to $6$ times with respect to Planck at low-$ell$. We argue that the large-scale E-mode polarisation may play an important role in analysing CMB temperature anomalies with future mission.
We develop a systematic and unified approach to estimate all possible secondary (i.e. non-primordial) nonlinear effects to the cosmic microwave background (CMB) polarization, named curve-of-sight integration approach. In this approach, the Boltzmann equation for polarized photons is rewritten in a line-of-sight integral along an exact geodesic in the perturbed universe, rather than a geodesic in the background universe used in the linear-order CMB calculation. This approach resolves the difficulty to solve the Boltzmann hierarchy with the nonlinear gravitational effects in the photon free-streaming regime and thus unifies the standard remapping approach for CMB lensing into the direct approach solving the Boltzmann equation for the nonlinear collisional effects. In this paper, we derive formulae that: (i) include all the nonlinear effects; (ii) can treat extended sources such as the contributions after the reionization. It offers a solid framework to discuss possible systematics in the standard estimation of CMB lensing by the remapping approach. As an explicit demonstration, we estimate the secondary B-mode power spectrum induced by all foreground gravitational effects: lensing, redshift, time-delay, emission-angle, and polarization-rotation effects. We define these effects properly so that they do not have any overlap, also without overlooking any effect. Then, we show that these effects only give corrections of the order of 0.001-0.01% to the standard lensing-induced B-mode power spectrum in the concordance $Lambda$ cold dark matter model. Our result confirms the reliability of using the remapping approach in upcoming CMB experiments aiming to detect the primordial gravitational waves with the tensor-to-scalar ratio of $r sim 10^{-3}$.
We present cosmological constraints from the combination of the full mission 9-year WMAP release and small-scale temperature data from the pre-Planck ACT and SPT generation of instruments. This is an update of the analysis presented in Calabrese et a l. 2013 and highlights the impact on $Lambda$CDM cosmology of a 0.06 eV massive neutrino - which was assumed in the Planck analysis but not in the ACT/SPT analyses - and a Planck-cleaned measurement of the optical depth to reionization. We show that cosmological constraints are now strong enough that small differences in assumptions about reionization and neutrino mass give systematic differences which are clearly detectable in the data. We recommend that these updated results be used when comparing cosmological constraints from WMAP, ACT and SPT with other surveys or with current and future full-mission Planck cosmology. Cosmological parameter chains are publicly available on the NASAs LAMBDA data archive.
The European Space Agencys Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 Octob er 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter LCDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta_*) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the LCDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا