ﻻ يوجد ملخص باللغة العربية
The Ly$alpha$ forest transmission probability distribution function (PDF) is an established probe of the intergalactic medium (IGM) astrophysics, especially the temperature-density relationship of the IGM. We measure the transmission PDF from 3393 Baryon Oscillations Spectroscopic Survey (BOSS) quasars from SDSS Data Release 9, and compare with mock spectra that include careful modeling of the noise, continuum, and astrophysical uncertainties. The BOSS transmission PDFs, measured at $langle z rangle = [2.3,2.6,3.0]$, are compared with PDFs created from mock spectra drawn from a suite of hydrodynamical simulations that sample the IGM temperature-density relationship, $gamma$, and temperature at mean-density, $T_0$, where $T(Delta) = T_0 Delta^{gamma-1}$. We find that a significant population of partial Lyman-limit systems with a column-density distribution slope of $beta_mathrm{pLLS} sim -2$ are required to explain the data at the low-transmission end of transmission PDF, while uncertainties in the mean Ly$alpha$ forest transmission affect the high-transmission end. After modelling the LLSs and marginalizing over mean-transmission uncertainties, we find that $gamma=1.6$ best describes the data over our entire redshift range, although constraints on $T_0$ are affected by systematic uncertainties. Within our model framework, isothermal or inverted temperature-density relationships ($gamma leq 1$) are disfavored at a significance of over 4$sigma$, although this could be somewhat weakened by cosmological and astrophysical uncertainties that we did not model.
We use the probability distribution function (PDF) of the lya forest flux at z=2-3, measured from high-resolution UVES/VLT data, and hydrodynamical simulations to obtain constraints on cosmological parameters and the thermal state of the intergalacti
We have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-$alpha$ forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two m
The Ly$alpha$ forest provides one of the best means of mapping large-scale structure at high redshift, including our tightest constraint on the distance-redshift relation before cosmic noon. We describe how the large-scale correlations in the Ly$alph
We present the BOSS Lyman-alpha (Lya) Forest Sample from SDSS Data Release 9, comprising 54,468 quasar spectra with zqso > 2.15 suitable for Lya forest analysis. This data set probes the intergalactic medium with absorption redshifts 2.0 < z_alpha <
We report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the Lya forest of high-redshift quasars. The study uses 48,640 quasars in the redshift range $2.1