ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of gas phase Ne$^*$ + NH$_3$ and Ne$^*$ + ND$_3$ Penning ionization at low temperatures

125   0   0.0 ( 0 )
 نشر من قبل Krzysztof Jachymski
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two isotopic chemical reactions, $mathrm{Ne}^*$ + NH$_3$, and $mathrm{Ne}^*$ + ND$_3$, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely $mathrm{Ne}^*$ + NH$_3$ $rightarrow$ Ne + NH$_3^+$ + $e^-$, and $mathrm{Ne}^*$ + NH$_3$ $rightarrow$ Ne + NH$_2^+$ + H + $e^-$, by detecting the NH$_3^+$ and NH$_2^+$ product ions, respectively. The cross sections for both reactions were found to increase with decreasing collision energy, $E_{coll}$, in the range 8 $mu$eV$<E_{coll}<$ 20 meV. The measured rate constant exhibits a curvature in a log(k)-log($E_{coll}$) plot from which it is concluded that the Langevin capture model does not properly describe the $mathrm{Ne}^*$ + NH$_3$ reaction in the entire range of collision energies covered here. Calculations based on multichannel quantum defect theory were performed to reproduce and interpret the experimental results. Good agreement was obtained by including long range van der Waals interactions combined with a 6-12 Lennard-Jones potential. The branching ratio between the two reactive channels, $Gamma = frac{[NH_2^+]}{[NH_2^+]+[NH_3^+]}$, is relatively constant, $Gammaapprox 0.3$, in the entire collision energy range studied here. Possible reasons for this observation are discussed and rationalised in terms of relative time scales of the reactant approach and the molecular rotation. Isotopic differences between the $mathrm{Ne}^*$ + NH$_3$ and $mathrm{Ne}^*$ + ND$_3$ reactions are small, as suggested by nearly equal branching ratios and cross sections for the two reactions.



قيم البحث

اقرأ أيضاً

We present state-selective measurements on the NH$_2^{+}$ + H$^{+}$ and NH$^{+}$ + H$^{+}$ + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH$_{3}$, where the two photoelectrons and two cations are measured i n coincidence using 3-D momentum imaging. Three dication electronic states are identified to contribute to the NH$_2^{+}$ + H$^{+}$ dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold NH$_2^+$ fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited NH$_2^+$ fragment with roughly 1 eV of internal energy. The NH$^{+}$ + H$^{+}$ + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the NH$_2^{+}$ + H$^{+}$ channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states.
We report measurements on the H$^{+}$ + H$^{+}$ fragmentation channel following direct single-photon double ionization of neutral NH$_{3}$ at 61.5 eV, where the two photoelectrons and two protons are measured in coincidence using 3-D momentum imaging . We identify four dication electronic states that contribute to H$^{+}$ + H$^{+}$ dissociation, based on our multireference configuration-interaction calculations of the dication potential energy surfaces. The extracted branching ratios between these four dication electronic states are presented. Of the four dication electronic states, three dissociate in a concerted process, while the fourth undergoes a sequential fragmentation mechanism. We find evidence that the neutral NH fragment or intermediate NH$^+$ ion is markedly ro-vibrationally excited. We also identify differences in the relative emission angle between the two photoelectrons as a function of their energy sharing for the four different dication states, which bare some similarities to previous observations made on atomic targets.
Penning ionization reactions in merged beams with precisely controlled collision energies have been shown to accurately probe quantum mechanical effects in reactive collisions. A complete microscopic understanding of the reaction is, however, faced w ith two major challenges---the highly excited character of the reactions entrance channel and the limited precision of even the best state-of-the-art ab initio potential energy surfaces. Here, we suggest photoassociation spectroscopy as a tool to identify the character of orbiting resonances in the entrance channel and probe the ionization width as a function of inter-particle separation. We introduce the basic concept and discuss the general conditions under which this type of spectroscopy will be successful.
The organic-inorganic lead halide perovskites are composed of organic molecules imbedded in an inorganic framework. The compounds with general formula CH$_{3}$NH$_{3}$PbX$_{3}$ (MAPbX$_{2}$) display large photovoltaic efficiencies for halogens $X$=Cl , Br, and I in a wide variety of sample geometries and preparation methods. The organic cation and inorganic framework are bound by hydrogen bonds that tether the molecules to the halide anions, and this has been suggested to be important to the optoelectronic properties. We have studied the effects of this bonding using time-of-flight neutron spectroscopy to measure the molecular dynamics in CH$_3$NH$_3$PbCl$_3$ (MAPbCl$_3$). Low-energy/high-resolution neutron backscattering reveals thermally-activated molecular dynamics with a characteristic temperature of $sim$ 95,K. At this same temperature, higher-energy neutron spectroscopy indicates the presence of an anomalous broadening in energy (reduced lifetime) associated with the molecular vibrations. By contrast, neutron powder diffraction shows that a spatially long-range structural phase transitions occurs at 178,K (cubic $rightarrow$ tetragonal) and 173,K (tetragonal $rightarrow$ orthorhombic). The large difference between these two temperature scales suggests that the molecular and inorganic lattice dynamics in MAPbCl$_3$ are actually decoupled. With the assumption that underlying physical mechanisms do not change with differing halogens in the organic-inorganic perovskites, we speculate that the energy scale most relevant to the photovoltaic properties of the lead-halogen perovskites is set by the lead-halide bond, not by the hydrogen bond.
We theoretically study slow collisions of NH$_3$ molecules with He atoms, where we focus in particular on the observation of scattering resonances. We calculate state-to-state integral and differential cross sections for collision energies ranging fr om 10${}^{-4}$ cm$^{-1}$ to 130 cm$^{-1}$, using fully converged quantum close-coupling calculations. To describe the interaction between the NH${}_3$ molecules and the He atoms, we present a four-dimensional potential energy surface, based on an accurate fit of 4180 {it ab initio} points. Prior to collision, we consider the ammonia molecules to be in their antisymmetric umbrella state with angular momentum $j=1$ and projection $k=1$, which is a suitable state for Stark deceleration. We find pronounced shape and Feshbach resonances, especially for inelastic collisions into the symmetric umbrella state with $j=k=1$. We analyze the observed resonant structures in detail by looking at scattering wavefunctions, phase shifts, and lifetimes. Finally, we discuss the prospects for observing the predicted scattering resonances in future crossed molecular beam experiments with a Stark-decelerated NH$_3$ beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا