ترغب بنشر مسار تعليمي؟ اضغط هنا

Three body resonances in close orbiting planetary systems: Tidal dissipation and orbital evolution

145   0   0.0 ( 0 )
 نشر من قبل John Papaloizou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the orbital evolution of a three planet system with masses in the super-Earth regime resulting from the action of tides on the planets induced by the central star which cause orbital circularization. We consider systems either in or near to a three body commensurability for which adjacent pairs of planets are in a first order commensurability. We develop a simple analytic solution, derived from a time averaged set of equations, that describes the expansion of the system away from strict commensurability as a function of time, once a state where relevant resonant angles undergo small amplitude librations has been attained. We perform numerical simulations that show the attainment of such resonant states focusing on the Kepler 60 system. The results of the simulations confirm many of the scalings predicted by the appropriate analytic solution. We go on to indicate how the results can be applied to put constraints on the amount of tidal dissipation that has occurred in the system. For example, if the system has been in a librating state since its formation, we find that its present period ratios imply an upper limit on the time average of 1/Q, with Q being the tidal dissipation parameter. On the other hand if a librating state has not been attained, a lower upper bound applies.



قيم البحث

اقرأ أيضاً

We study the dynamical evolution of the TRAPPIST-1 system under the influence of orbital circularization through tidal interaction with the central star. We find that systems with parameters close to the observed one evolve into a state where consecu tive planets are linked by first order resonances and consecutive triples, apart from planets c, d and e, by connected three body Laplace resonances. The system expands with period ratios increasing and mean eccentricities decreasing with time. This evolution is largely driven by tides acting on the innermost planets which then influence the outer ones. In order that deviations from commensurability become significant only on $Gy$ time scales or longer, we require that the tidal parameter associated with the planets has to be such that $Q > sim 10^{2-3}.$ At the same time, if we start with two subsystems, with the inner three planets comprising the inner one, $Q$ associated with the planets has to be on the order (and not significantly exceeding) $10^{2-3}$ for the two subsystems to interact and end up in the observed configuration. This scenario is also supported by modelling of the evolution through disk migration which indicates that the whole system cannot have migrated inwards together. Also in order to avoid large departures from commensurabilities, the system cannot have stalled at a disk inner edge for significant time periods. We discuss the habitability consequences of the tidal dissipation implied by our modelling, concluding that planets d, e and f are potentially in habitable zones.
Observations of hot Jupiter type exoplanets suggest that their orbital period distribution depends on the metallicity of their host star. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation insi de the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 and 1.0 $M_{odot}$ evolving from the early pre-main sequence phase up to the red giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence the dissipation of a metal poor Sun-like star is higher than the dissipation of a metal rich Sun-like star, on the main sequence it is the opposite. However, for the $0.4~M_{odot}$ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Namely, we need to improve the treatment of the rotation evolution in the orbital evolution model and ultimately we need to consistently couple of the orbital model to the stellar evolution model.
In Efroimsky & Makarov (2014), we derived from the first principles a formula for the tidal heating rate in a tidally perturbed homogeneous sphere. We compared it with the formulae used in the literature, and pointed out the differences. Using this r esult, we now present three case studies - Mercury, Kepler-10b, and a triaxial Io. A very sharp frequency-dependence of k2/Q near spin-orbit resonances yields a similarly sharp dependence of k2/Q on the spin rate. This indicates that physical libration may play a major role in tidal heating of synchronously rotating bodies. The magnitude of libration in the spin rate being defined by the planets triaxiality, the latter should be a factor determining the dissipation rate. Other parameters equal, a synchronously rotating body with a stronger triaxiality should generate more heat than a similar body of a more symmetrical shape. Further in the paper, we discuss scenarios where initially triaxial objects melt and lose their triaxiality. Thereafter, dissipation in them becomes less intensive; so the bodies freeze. The tidal bulge becomes a new permanent figure, with a new triaxiality lower than the original. In the paper, we also derive simplified, approximate expressions for dissipation rate in a rocky planet of the Maxwell rheology, with a not too small Maxwell time. The three expressions derived pertain to the cases of a synchronous spin, a 3:2 resonance, and a nonresonant rotation; so they can be applied to most close-in super-Earth exoplanets detected thus far. In such bodies, the rate of tidal heating outside of synchronous rotation is weakly dependent on the eccentricity and obliquity, provided both these parameters are small or moderate. According to our calculation, Kepler-10b could hardly survive the great amount of tidal heating without being synchronised, circularised and also reshaped through a complete or partial melt-down.
A formula for the tidal dissipation rate in a spherical body is derived from first principles, to correct some mathematical inaccuracies found in the literature. The development is combined with the Darwin-Kaula formalism for tides. Our intermediate results are compared with those by Zschau (1978) and Platzman (1984). When restricted to the special case of an incompressible spherical planet spinning synchronously without libration, our final formula can be compared with the commonly used expression from Peale & Cassen (1978, Eqn. 31). The two turn out to differ. In our expression, the contributions from all Fourier modes are positive-definite, this not being the case of the formula from Ibid. (The presence of negative terms in their formula was noticed by Makarov 2013.) Examples of application of our expression for the tidal damping rate are provided in the work by Makarov and Efroimsky (2014).
Since 1995, numerous close-in planets have been discovered around low-mass stars (M to A-type stars). These systems are susceptible to be tidally evolving, in particular the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and also shape the orbital architecture of the surrounding planetary system. Recent theoretical studies have shown that the amplitude of the stellar dissipation can vary over several orders of magnitude as the star evolves, and that it also depends on the stellar mass and rotation. We present here one of the first studies of the dynamics of close-in planets orbiting low-mass stars (from $0.6~M_odot$ to $1.2~M_odot$) where we compute the simultaneous evolution of the stars structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves (their restoring force is the Coriolis acceleration) excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in celestial mechanics. This is particularly true during the Pre Main Sequence (PMS) phase and to a lesser extent during the Sub Giant (SG) phase. Numerical simulations show that only the high dissipation occurring during the PMS phase has a visible effect on the semi-major axis of close-in planets. We also investigate the effect of the metallicity of the star on the tidal evolution of planets. We find that the higher the metallicity of the star, the higher the dissipation and the larger the tidally-induced migration of the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا