ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent Majorana Fermions and their Restricted Clifford Algebra

122   0   0.0 ( 0 )
 نشر من قبل Charles Suggs
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Jackiw




اسأل ChatGPT حول البحث

Dedicated to Ludwig Faddeev on his 80th birthday. Ludwig exemplifies perfectly a mathematical physicist: significant contribution to mathematics (algebraic properties of integrable systems) and physics (quantum field theory). In this note I present an exercise which bridges mathematics (restricted Clifford algebra) to physics (Majorana fermions).



قيم البحث

اقرأ أيضاً

We use Dirac matrix representations of the Clifford algebra to build fracton models on the lattice and their effective Chern-Simons-like theory. As an example we build lattice fractons in odd $D$ spatial dimensions and their $(D+1)$ effective theory. The model possesses an anti-symmetric $K$ matrix resembling that of hierarchical quantum Hall states. The gauge charges are conserved in sub-dimensional manifolds which ensures the fractonic behavior. The construction extends to any lattice fracton model built from commuting projectors and with tensor products of spin-$1/2$ degrees of freedom at the sites.
117 - C. Chamon , R. Jackiw , Y. Nishida 2010
A Dirac-type matrix equation governs surface excitations in a topological insulator in contact with an s-wave superconductor. The order parameter can be homogenous or vortex valued. In the homogenous case a winding number can be defined whose non-van ishing value signals topological effects. A vortex leads to a static, isolated, zero energy solution. Its mode function is real, and has been called Majorana. Here we demonstrate that the reality/Majorana feature is not confined to the zero energy mode, but characterizes the full quantum field. In a four-component description a change of basis for the relevant matrices renders the Hamiltonian imaginary and the full, space-time dependent field is real, as is the case for the relativistic Majorana equation in the Majorana matrix representation. More broadly, we show that the Majorana quantization procedure is generic to superconductors, with or without the Dirac structure, and follows from the constraints of fermionic statistics on the symmetries of Bogoliubov-de Gennes Hamiltonians. The Hamiltonian can always be brought to an imaginary form, leading to equations of motion that are real with quantized real field solutions. Also we examine the Fock space realization of the zero mode algebra for the Dirac-type systems. We show that a two-dimensional representation is natural, in which fermion parity is preserved.
Real Clifford algebras for arbitrary number of space and time dimensions as well as their representations in terms of spinors are reviewed and discussed. The Clifford algebras are classified in terms of isomorphic matrix algebras of real, complex or quaternionic type. Spinors are defined as elements of minimal or quasi-minimal left ideals within the Clifford algebra and as representations of the pin and spin groups. Two types of Dirac adjoint spinors are introduced carefully. The relation between mathematical structures and applications to describe relativistic fermions is emphasized throughout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا