ترغب بنشر مسار تعليمي؟ اضغط هنا

Class 0 Protostars in the Perseus Molecular Cloud: A Correlation Between the Youngest Protostars and the Dense Gas Distribution

103   0   0.0 ( 0 )
 نشر من قبل Sarah Sadavoy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use PACS and SPIRE continuum data at 160 um, 250 um, 350 um, and 500 um from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC348, L1448, L1455, and NGC1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 um as well as archival Spitzer catalogues and SCUBA 850 um photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.



قيم البحث

اقرأ أيضاً

83 - John J. Tobin 2016
We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array (VLA) survey at Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.6 cm). The observed sample has a bolometric luminosity r ange between 0.1 L$_{odot}$ and $sim$33 L$_{odot}$, with a median of 0.7 L$_{odot}$. This multiplicity study is based on the Ka-band data, having a best resolution of $sim$0.065 (15 AU) and separations out to $sim$43 (10000 AU) can be probed. The overall multiplicity fraction (MF) is found to be of 0.40$pm$0.06 and the companion star fraction (CSF) is 0.71$pm$0.06. The MF and CSF of the Class 0 protostars are 0.57$pm$0.09 and 1.2$pm$0.2, and the MF and CSF of Class I protostars are both 0.23$pm$0.08. The distribution of companion separations appears bi-modal, with a peak at $sim$75 AU and another peak at $sim$3000 AU. Turbulent fragmentation is likely the dominant mechanism on $>$1000 AU scales and disk fragmentation is likely to be the dominant mechanism on $<$200 AU scales. Toward three Class 0 sources we find companions separated by $<$30 AU. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50 AU to 400 AU) structures and may be candidates for ongoing disk fragmentation.
We demonstrate the unique capabilities of Herschel to study very young luminous extragalactic young stellar objects (YSOs) by analyzing a central strip of the Large Magellanic Cloud obtained through the HERITAGE Science Demonstration Program. We comb ine PACS 100 and 160, and SPIRE 250, 350, and 500 microns photometry with 2MASS (1.25-2.17 microns) and Spitzer IRAC and MIPS (3.6-70 microns) to construct complete spectral energy distributions (SEDs) of compact sources. From these, we identify 207 candidate embedded YSOs in the observed region, ~40% never-before identified. We discuss their position in far-infrared color-magnitude space, comparing with previously studied, spectroscopically confirmed YSOs and maser emission. All have red colors indicating massive cool envelopes and great youth. We analyze four example YSOs, determining their physical properties by fitting their SEDs with radiative transfer models. Fitting full SEDs including the Herschel data requires us to increase the size and mass of envelopes included in the models. This implies higher accretion rates (greater than or equal to 0.0001 M_sun/yr), in agreement with previous outflow studies of high-mass protostars. Our results show that Herschel provides reliable longwave SEDs of large samples of high-mass YSOs; discovers the youngest YSOs whose SEDs peak in Herschel bands; and constrains the physical properties and evolutionary stages of YSOs more precisely than was previously possible.
We present the first dust emission results toward a sample of seven protostellar disk candidates around Class 0 and I sources in the Perseus molecular cloud from the VLA Nascent Disk and Multiplicity (VANDAM) survey with ~0.05 or 12 AU resolution. To examine the surface brightness profiles of these sources, we fit the Ka-band 8 mm dust-continuum data in the u,v-plane to a simple, parametrized model based on the Shakura-Sunyaev disk model. The candidate disks are well-fit by a model with a disk-shaped profile and have masses consistent with known Class 0 and I disks. The inner-disk surface densities of the VANDAM candidate disks have shallower density profiles compared to disks around more evolved Class II systems. The best-fit model radii of the seven early-result candidate disks are R_c > 10 AU; at 8 mm, the radii reflect lower limits on the disk size since dust continuum emission is tied to grain size and large grains radially drift inwards. These relatively large disks, if confirmed kinematically, are inconsistent with theoretical models where the disk size is limited by strong magnetic braking to < 10 AU at early times.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 1.1 mm dust continuum and CO 2-1 emission toward six dense cores within the Ophiuchus molecular cloud. We detect compact, sub-arcsecond continuum structures toward three t argets, two of which (Oph A N6 and SM1) are located in the Ophiuchus A ridge. Two targets, SM1 and GSS 30, contain two compact sources within the ALMA primary beam. We argue that several of the compact structures are small ($R lesssim 80$ au) accretion disks around young protostars, due to their resolved, elongated structures, coincident radio and x-ray detections, or bipolar outflow detections. While CO line wings extend to $pm 10-20$ km s$^{-1}$ for the more evolved sources GSS 30 IRS3 and IRS1, CO emission toward other sources, where detected, only extends a few km s$^{-1}$ from the cloud $v_mathrm{LSR}$. The dust spectral index toward the compact objects suggests that the disks are either optically thick at 1.1 mm, or that significant grain growth has already occurred. We identify, for the first time, a single compact continuum source ($R sim 100$ au) toward N6 embedded within a larger continuum structure. SM1N is extended in the continuum but is highly centrally concentrated, with a density profile that follows a $r^{-1.3}$ power law within 200 au, and additional structure suggested by the uv-data. Both N6 and SM1N show no clear bipolar outflows with velocities greater than a few km s$^{-1}$ from the cloud velocity. These sources are candidates to be the youngest protostars or first hydrostatic cores in the Ophiuchus molecular cloud.
Observations of dense molecular gas lie at the basis of our understanding of the density and temperature structure of protostellar envelopes and molecular outflows. We aim to characterize the properties of the protostellar envelope, molecular outflow and surrounding cloud, through observations of high excitation molecular lines within a sample of 16 southern sources presumed to be embedded YSOs. Observations of submillimeter lines of CO, HCO+ and their isotopologues, both single spectra and small maps were taken with the FLASH and APEX-2a instruments mounted on APEX to trace the gas around the sources. The HARP-B instrument on the JCMT was used to map IRAS 15398-3359 in these lines. HCO+ mapping probes the presence of dense centrally condensed gas, a characteristic of protostellar envelopes. The rare isotopologues C18O and H13CO+ are also included to determine the optical depth, column density, and source velocity. The combination of multiple CO transitions, such as 3-2, 4-3 and 7-6, allows to constrain outflow properties, in particular the temperature. Archival submillimeter continuum data are used to determine envelope masses. Eleven of the sixteen sources have associated warm and/or dense quiescent as characteristic of protostellar envelopes, or an associated outflow. Using the strength and degree of concentration of the HCO+ 4-3 and CO 4-3 lines as a diagnostic, five sources classified as Class I based on their spectral energy distributions are found not to be embedded YSOs. The C18O 3-2 lines show that for none of the sources, foreground cloud layers are present. Strong molecular outflows are found around six sources, .. (continued in paper)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا