ترغب بنشر مسار تعليمي؟ اضغط هنا

The COS/UVES Absorption Survey of the Magellanic Stream. III: Ionization, Total Mass, and Inflow Rate onto the Milky Way

149   0   0.0 ( 0 )
 نشر من قبل Andrew J. Fox
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way, creating the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm-emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross section of the Magellanic System is ~11 000 square degrees, or around a quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate that the total mass (atomic plus ionized) of the Magellanic System is ~2.0 billion solar masses, with the ionized gas contributing over twice as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ~0.5-1.5 Gyr, it will represent an average inflow rate of ~3.7-6.7 solar masses per year, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Stream may not survive its journey to the disk fully intact, and will instead add material to (and cool) the corona.



قيم البحث

اقرأ أيضاً

We present new calculations of the mass inflow and outflow rates around the Milky Way, derived from a catalog of ultraviolet metal-line high velocity clouds (HVCs). These calculations are conducted by transforming the HVC velocities into the Galactic Standard of Rest (GSR) reference frame, identifying inflowing (v_GSR < 0 km/s) and outflowing (v_GSR > 0 km/s) populations, and using observational constraints on the distance, metallicity, dust content, covering fractions, and total hydrogen column density of each population. After removing HVCs associated with the Magellanic Stream and the Fermi Bubbles, we find inflow and outflow rates in cool (T~10^4 K) ionized gas of dM_in/dt >~ 0.53+/-0.17 (d/12 kpc) (Z/0.2 Z_sun)^-1 M_sun/yr and dM_out/dt >~ 0.16+/-0.06 (d/12 kpc) (Z/0.5 Z_sun)^-1 M_sun/yr. The excess of inflowing over outflowing gas suggests that the Milky Way is currently in an inflow-dominated phase, but the presence of substantial mass flux in both directions supports a Galactic fountain model, in which gas is constantly recycled between the disk and the halo. We also find that the metal flux in both directions (in and out) is indistinguishable. By comparing the outflow rate to the Galactic star formation rate, we present the first estimate of the mass loading factor (etc_HVC) of the disk-wide Milky Way wind, finding eta_HVC >~ 0.10+/-0.06 (d/12 kpc) (Z/0.5 Z_sun)^-1. Including the contributions from low- and intermediate-velocity clouds and from hot gas would increase these inflow and outflow estimates.
128 - Alis J. Deason 2019
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimension al Gaussians to the Galactic proper motion distributions. The number counts of RGB stars are converted to total stellar halo luminosity using a suite of isochrones weighted by age and metallicity, and by applying a volume correction based on the stellar halo density profile. Our method is tested and calibrated using Galaxia and N-body models. We find a total luminosity (out to 100 kpc) of L_halo = 7.9 +/- 2.0 x 10^8 L_Sun excluding Sgr, and L_halo = 9.4 +/- 2.4 x 10^8 L_Sun including Sgr. These values are appropriate for our adopted stellar halo density profile and metallicity distribution, but additional systematics related to these assumptions are quantified and discussed. Assuming a stellar mass-to-light ratio appropriate for a Kroupa initial mass function (M*/L = 1.5), we estimate a stellar halo mass of M*_halo = 1.4 +/- 0.4 x 10^9 M_Sun. This mass is larger than previous estimates in the literature, but is in good agreement with the emerging picture that the (inner) stellar halo is dominated by one massive dwarf progenitor. Finally, we argue that the combination of a ~10^9 M_Sun mass and an average metallicity of <[Fe/H]> ~ -1.5 for the Galactic halo points to an ancient (~10 Gyr) merger event.
57 - Oliver Newton 2017
The total number and luminosity function of the population of dwarf galaxies of the Milky Way (MW) provide important constraints on the nature of the dark matter and on the astrophysics of galaxy formation at low masses. However, only a partial censu s of this population exists because of the flux limits and restricted sky coverage of existing Galactic surveys. We combine the sample of satellites recently discovered by the Dark Energy Survey (DES) with the satellites found in Sloan Digital Sky Survey (SDSS) Data Release 9 (together these surveys cover nearly half the sky) to estimate the total luminosity function of satellites down to $M_{rm V}=0$. We apply a new Bayesian inference method in which we assume that the radial distribution of satellites independently of absolute magnitude follows that of subhaloes selected according to their peak maximum circular velocity. We find that there should be at least $124^{+40}_{-27}$ (68 per cent CL, statistical error) satellites brighter than $M_{rm V}=0$ within $300$ kpc of the Sun. As a result of our use of new data and better simulations, and a more robust statistical method, we infer a much smaller population of satellites than reported in previous studies using earlier SDSS data only; we also address an underestimation of the uncertainties in earlier work by accounting for stochastic effects. We find that the inferred number of faint satellites depends only weakly on the assumed mass of the MW halo and we provide scaling relations to extend our results to different assumed halo masses and outer radii. We predict that half of our estimated total satellite population of the MW should be detected by the Large Synoptic Survey Telescope. The code implementing our estimation method is available online.
In a companion paper by Koposov et al., RR Lyrae from textit{Gaia} Data Release 2 are used to demonstrate that stars in the Orphan stream have velocity vectors significantly misaligned with the stream track, suggesting that it has received a large gr avitational perturbation from a satellite of the Milky Way. We argue that such a mismatch cannot arise due to any realistic static Milky Way potential and then explore the perturbative effects of the Large Magellanic Cloud (LMC). We find that the LMC can produce precisely the observed motion-track mismatch and we therefore use the Orphan stream to measure the mass of the Cloud. We simultaneously fit the Milky Way and LMC potentials and infer that a total LMC mass of $1.38^{+0.27}_{-0.24} times10^{11},rm{M_odot}$ is required to bend the Orphan Stream, showing for the first time that the LMC has a large and measurable effect on structures orbiting the Milky Way. This has far-reaching consequences for any technique which assumes that tracers are orbiting a static Milky Way. Furthermore, we measure the Milky Way mass within 50 kpc to be $3.80^{+0.14}_{-0.11}times10^{11} M_odot$. Finally, we use these results to predict that, due to the reflex motion of the Milky Way in response to the LMC, the outskirts of the Milky Ways stellar halo should exhibit a bulk, upwards motion.
121 - Mandy Bailey 2015
Diffuse interstellar bands (DIBs) trace warm neutral and weakly-ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic study of two of the strongest DIBs, at 5780 and 5797 AA, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na,{sc i},D and Ca,{sc ii},K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 AA DIB with neutral gas, and the 5780 AA DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na,{sc i},D line traces the denser ISM whereas the Ca,{sc ii},K line traces the more diffuse, warmer gas. The Ca,{sc ii},K line has an additional component at $sim200$--220 km s$^{-1}$ seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 AA DIBs show very little correlation on these small scales, as do the Ca,{sc ii},K and Na,{sc i},D lines. This suggests that good correlations between the 5780 and 5797 AA DIBs, or between Ca,{sc ii},K and Na,{sc i},D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na,{sc i} in the SMC, LMC and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا