ﻻ يوجد ملخص باللغة العربية
Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way, creating the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm-emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross section of the Magellanic System is ~11 000 square degrees, or around a quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate that the total mass (atomic plus ionized) of the Magellanic System is ~2.0 billion solar masses, with the ionized gas contributing over twice as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ~0.5-1.5 Gyr, it will represent an average inflow rate of ~3.7-6.7 solar masses per year, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Stream may not survive its journey to the disk fully intact, and will instead add material to (and cool) the corona.
We present new calculations of the mass inflow and outflow rates around the Milky Way, derived from a catalog of ultraviolet metal-line high velocity clouds (HVCs). These calculations are conducted by transforming the HVC velocities into the Galactic
We measure the total stellar halo luminosity using red giant branch (RGB) stars selected from Gaia data release 2. Using slices in magnitude, colour and location on the sky, we decompose RGB stars belonging to the disc and halo by fitting 2-dimension
The total number and luminosity function of the population of dwarf galaxies of the Milky Way (MW) provide important constraints on the nature of the dark matter and on the astrophysics of galaxy formation at low masses. However, only a partial censu
In a companion paper by Koposov et al., RR Lyrae from textit{Gaia} Data Release 2 are used to demonstrate that stars in the Orphan stream have velocity vectors significantly misaligned with the stream track, suggesting that it has received a large gr
Diffuse interstellar bands (DIBs) trace warm neutral and weakly-ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic study of two of the strongest DIBs, at 5780 and 5797 AA, in optical spectra of