ﻻ يوجد ملخص باللغة العربية
We introduce a system with one or two amplified nonlinear sites (hot spots, HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.
We introduce a discrete lossy system, into which a double hot spot (HS) is inserted, i.e., two mutually symmetric sites carrying linear gain and cubic nonlinearity. The system can be implemented as an array of optical or plasmonic waveguides, with a
It is well known that the two-dimensional (2D) nonlinear Schrodinger equation (NLSE) with the cubic-quintic (CQ) nonlinearity supports a family of stable fundamental solitons, as well as solitary vortices (alias vortex rings), which are stable for su
We conduct an extensive study of nonlinear localized modes (NLMs), which are temporally periodic and spatially localized structures, in a two-dimensional array of repelling magnets. In our experiments, we arrange a lattice in a hexagonal configuratio
We study experimentally light localization at phase-slip waveguides and at the intersection of phase-slips in a two-dimensional (2D) square photonic lattice. Such system allows to observe a variety of effects, including the existence of spatially loc
We present eight types of spatial optical solitons which are possible in a model of a planar waveguide that includes a dual-channel trapping structure and competing (cubic-quintic) nonlinearity. Among the families of trapped beams are symmetric and a