ﻻ يوجد ملخص باللغة العربية
The present work presents a density-functional microscopic model of soft biological tissue. The model was based on a prototype molecular structure from experimentally resolved collagen peptide residues and water clusters and has the objective to capture some well-known experimental features of soft tissues. It was obtained the optimized geometry, binding and coupling energies and dipole moments. The results concerning the stability of the confined water clusters, the water-water and water-collagen interactions within the CLBM framework were successfully correlated to some important trends observed experimentally in inflammatory tissues.
The rheology of biological tissues is important for their function, and we would like to better understand how single cells control global tissue properties such as tissue fluidity. A confluent tissue can fluidize when cells diffuse by executing a se
Surface tension governed by differential adhesion can drive fluid particle mixtures to sort into separate regions, i.e., demix. Does the same phenomenon occur in confluent biological tissues? We begin to answer this question for epithelial monolayers
In the theory of weakly non-linear elasticity, Hamilton et al. [J. Acoust. Soc. Am. textbf{116} (2004) 41] identified $W = mu I_2 + (A/3)I_3 + D I_2^2$ as the fourth-order expansion of the strain-energy density for incompressible isotropic solids. Su
When a block made of an elastomer is subjected to large shear, its surface remains flat. When a block of biological soft tissue is subjected to large shear, it is likely that its surface in the plane of shear will buckle (apparition of wrinkles). One
A stochastic genetic model for biological aging is introduced bridging the gap between the bit-string Penna model and the Pletcher-Neuhauser approach. The phenomenon of exponentially increasing mortality function at intermediate ages and its decelera