ترغب بنشر مسار تعليمي؟ اضغط هنا

MHD and deep mixing in evolved stars. 1. 2D and 3D analytical models for the AGB

192   0   0.0 ( 0 )
 نشر من قبل Maurizio Busso dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The advection of thermonuclear ashes by magnetized domains emerging from near the H-shell was suggested to explain AGB star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple 2D geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that, below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macro-turbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that, for both the studied regions, the solution previously found can be seen as a planar section of a more complex behavior, in which anyway the average radial velocity retains the same dependency on radius found in 2D. As a final check, we compare our results to approximate descriptions of buoyant magnetic structures. For realistic boundary conditions the envelope crossing times are sufficient to disperse in the huge convective zone any material transported, suggesting magnetic advection as a promising mechanism for deep mixing. The mixing velocities are smaller than for convection, but larger than for diffusion and adequate to extra-mixing in red giants.



قيم البحث

اقرأ أيضاً

The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the $^{26}$Al/$^{27}$Al ratio in presolar grain s of circumstellar origin. Non-convective mixing, occurring during both Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stages is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the $^{26}$Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of population I stars above about 1.2 $M_{odot}$, this consumes $^3$He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.
We study the evolved stellar population of the galaxy Sextans A. This galaxy is one of the lowest metallicity dwarfs in which variable asymptotic giant branch stars have been detected, suggesting that little metal enrichment took place during the pas t history. The analysis consists in the characterization of a sample of evolved stars, based on evolutionary tracks of asymptotic giant branch and red super giant stars, which include the description of dust formation in their winds. Use of mid-infrared and near-infrared data allowed us to identify carbon-rich sources, stars undergoing hot bottom burning and red super giants. The dust production rate, estimated as $6times 10^{-7} M_{odot}/$yr, is dominated by $sim 10$ carbon stars, with a small contribution of higher mass M-stars, of the order of $4times 10^{-8} M_{odot}/$yr. The importance of this study to understand how dust production works in metal-poor environments is also evaluated.
We present post process neutron capture computations for Asymptotic Giant Branch stars of 1.5 to 3 Mo and metallicities -1.3 to 0.1. The reference stellar models are computed with the FRANEC code, using the Schwarzschilds criterion for convection. Mo tivations for this choice are outlined. We assume that MHD processes induce the penetration of protons below the convective boundary, when the third dredge up occurs. There, the 13C(alpha,n)16O neutron source can subsequently operate, merging its effects with those of the 22Ne(alpha,n)25Mg reaction, activated at the temperature peaks characterizing AGB stages. This work has three main scopes. i) We provide a grid of abundance yields, as produced through our MHD mixing scheme, uniformly sampled in mass and metallicity. From it, we deduce that the solar s process distribution, as well as the abundances in recent stellar populations, can be accounted for, without the need of the extra primary like contributions suggested in the past. ii) We formulate analytical expressions for the mass of the 13C pockets generated, in order to allow easy verification of our findings. iii) We compare our results with observations of evolved stars and with isotopic ratios in presolar SiC grains, also noticing how some flux tubes should survive turbulent disruption, carrying C rich materials into the winds even when the envelope is O rich. This wind phase is approximated through the G component of AGB s processing. We conclude that MHD induced mixing is adequate to drive slow neutron capture phenomena accounting for observations. Our prescriptions should permit its inclusion into current stellar evolutionary codes.
We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass ($M < 8~M_{odot}$) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are $E(B-V)=1.85$ mag and $d=0.77$ Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for $40%$ of the sources brighter than the tip of the red giant branch. Most of these stars descend from $sim 1.1-1.3~M_{odot}$ progenitors, formed during the major epoch of star formation, which occurred $sim 2.5$ Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is $7times 10^{-6}~M_{odot}$/yr.
Isotope ratios can be measured in presolar SiC grains from ancient Asymptotic Giant Branch (AGB) stars at permil-level (0.1%) precision. Such precise grain data permit derivation of more stringent constraints and calibrations on mixing efficiency in AGB models than traditional spectroscopic observations. In this paper we compare SiC heavy-element isotope ratios to a new series of FRUITY models that include the effects of mixing triggered by magnetic fields. Based on 2D and 3D simulations available in the literature, we propose a new formulation, upon which the general features of mixing induced by magnetic fields can be derived. The efficiency of such a mixing, on the other hand, relies on physical quantities whose values are poorly constrained. We present here our calibration by comparing our model results with the heavy-element isotope data of presolar SiC grains from AGB stars. We demonstrate that the isotopic compositions of all measured elements (Ni, Sr, Zr, Mo, Ba) can be simultaneously fitted by adopting a single magnetic field configuration in our new FRUITY models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا