ﻻ يوجد ملخص باللغة العربية
Based on the dual representation in terms of the recently established eigenfunctions of the evolution kernel in heavy-quark effective theory, we investigate the description of the B-meson light-cone distribution amplitude (LCDA) beyond tree-level. In particular, in dual space, small and large momenta do not mix under renormalization, and therefore perturbative constraints from a short-distance expansion in the parton picture can be implemented independently from non-perturbative modelling of long-distance effects. It also allows to (locally) resum perturbative logarithms from large dual momenta at fixed values of the renormalization scale. We construct a generic procedure to combine perturbative and non-perturbative information on the B-meson LCDA and compare different model functions and the resulting logarithmic moments which are the relevant hadronic parameters in QCD factorization theorems for exclusive B-meson decays.
A new method for the model-independent determination of the light-cone distribution amplitude (LCDA) of the $B$-meson in heavy quark effective theory (HQET) is proposed by combining the large momentum effective theory (LaMET) and the numerical simula
The $B$-meson light-cone distribution amplitude (LCDA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory (HQET) and is a building block of QCD factorization formula for exclusive $B$
The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory, corresponding to a long-distance component in the factorization formula for exclusive B-mes
We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large $N_c$ limit and can be solved exactly. The lowest anomalous dimension is s
When the bilocal heavy-quark effective theory (HQET) operator for the B-meson distribution amplitude has a light-like distance t between the quark and antiquark fields, the scale sim 1/t separates the UV and IR regions, which induce the cusp singular