ﻻ يوجد ملخص باللغة العربية
Cloud computing is a newly emerging distributed computing which is evolved from Grid computing. Task scheduling is the core research of cloud computing which studies how to allocate the tasks among the physical nodes so that the tasks can get a balanced allocation or each tasks execution cost decreases to the minimum or the overall system performance is optimal. Unlike the previous task slices sequential execution of an independent task in the model of which the target is processing time, we build a model that targets at the response time, in which the task slices are executed in parallel. Then we give its solution with a method based on an improved adjusting entropy function. At last, we design a new task scheduling algorithm. Experimental results show that the response time of our proposed algorithm is much lower than the game-theoretic algorithm and balanced scheduling algorithm and compared with the balanced scheduling algorithm, game-theoretic algorithm is not necessarily superior in parallel although its objective function value is better.
With the advance in mobile computing, Internet of Things, and ubiquitous wireless connectivity, social sensing based edge computing (SSEC) has emerged as a new computation paradigm where people and their personally owned devices collect sensor measur
Cloud computing is a newly emerging distributed system which is evolved from Grid computing. Task scheduling is the core research of cloud computing which studies how to allocate the tasks among the physical nodes, so that the tasks can get a balance
Artificial Intelligence (AI) and Internet of Things (IoT) applications are rapidly growing in todays world where they are continuously connected to the internet and process, store and exchange information among the devices and the environment. The cl
Vehicular Cloud Computing (VCC) is a new technological shift which exploits the computation and storage resources on vehicles for computational service provisioning. Spare on-board resources are pooled by a VCC operator, e.g. a roadside unit, to comp
Software-defined internet of vehicles (SDIoV) has emerged as a promising paradigm to realize flexible and comprehensive resource management, for next generation automobile transportation systems. In this paper, a vehicular cloud computing-based SDIoV