ﻻ يوجد ملخص باللغة العربية
Gravitational wave burst is a catch-all category for signals whose durations are shorter than the observation period. We apply a method new to gravitational wave data analysis --- Bayesian non-parameterics --- to the problem of gravitational wave detection, with an emphasis on pulsar timing array observations. In Bayesian non-parametrics, constraints are set on the function space that may be reasonably thought to characterize the range of gravitational-wave signals. This differs from the approaches currently employed or proposed, which focus on introducing parametric signal models or looking for excess power as evidence of the presence of a gravitational wave signal. Our Bayesian nonparametrics analysis method addresses two issues: (1) investigate if a gravitational wave burst is present in the data; (2) infer the sky location of the source and the duration of the burst. Compared with the popular method proposed by Finn & Lommen, our method improves in two aspects: (1) we can estimate the burst duration by adding the prior that the gravitational wave signals are smooth, while Finn & Lommen ignored this important point; (2) we perform a full Bayesian analysis by marginalizing over all possible parameters and provide robust inference on the presence of gravitational waves, while Finn & Lommen chose to optimize over parameters, which would increase false alarm risk and also underestimate the parameter uncertainties.
We study how to probe bispectra of stochastic gravitational waves with pulsar timing arrays. The bispectrum is a key to probe the origin of stochastic gravitational waves. In particular, the shape of the bispectrum carries valuable information of inf
Cosmic strings are potential gravitational wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four
In our previous paper cite{PTA1} we derived a generic expression for the pulse redshift the main observable for the Pulsar Timing Array (PTA) experiment for detection of gravitational waves for all possible polarizations induced by modifications of g
Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive--black-hole binaries, cosmic
Anisotropic bursts of gravitational radiation produced by events such as super-massive black hole mergers leave permanent imprints on space. Such gravitational wave memory (GWM) signals are, in principle, detectable through pulsar timing as sudden ch