Using self-consistent, physically motivated models, we investigate the X-ray obscuration in 19 Type 2 [OIII] 5007 AA selected AGN, 9 of which are local Seyfert 2 galaxies and 10 of which are Type 2 quasar candidates. We derive reliable line-of-sight and global column densities for these objects, which is the first time this has been reported for an AGN sample; 4 AGN have significantly different global and line-of-sight column densities. Five sources are heavily obscured to Compton-thick. We comment on interesting sources revealed by our spectral modeling, including a candidate ``naked Sy2. After correcting for absorption, we find that the ratio of the rest-frame, 2-10 keV luminosity (L$_{rm 2-10keV,in}$) to L$_{rm [OIII]}$ is 1.54 $pm$ 0.49 dex which is essentially identical to the mean Type 1 AGN value. The Fe K$alpha$ luminosity is significantly correlated with L$_{rm [OIII]}$, but with substantial scatter. Finally, we do not find a trend between L$_{rm 2-10keV,in}$ and global or line-of-sight column density, between column density and redshift, between column density and scattering fraction or between scattering fraction and redshift.