ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetization scaling in the paramagnetic phase of Mn1-xFexSi solid solutions

106   0   0.0 ( 0 )
 نشر من قبل Inna Lobanova
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetization field and temperature dependences in the paramagnetic phase of Mn1-xFexSi solid solutions with x<0.3 are investigated in the range B<5 T and T<60 K. It is found that field dependences of the magnetization M(B,T=const) exhibit scaling behavior of the form Bpartial M/partial B-M=F(B/(T-Ts)), where Ts denotes an empirically determined temperature of the transition into the magnetic phase with fluctuation driven short-range magnetic order and F(c{hi}) is a universal scaling function for given composition. The scaling relation allowed concluding that the magnetization in the paramagnetic phase of Mn1-xFexSi is represented by the sum of two terms. The first term is saturated by the scaling variable c{hi}=B/(T-Ts), whereas the second is linearly dependent on the magnetic field. A simple analytical formula describing the magnetization is derived and applied to estimates of the parameters characterizing localized magnetic moments in the studied system. The obtained data may be qualitatively interpreted assuming magnetic inhomogeneity of the paramagnetic phase on the nanoscale.



قيم البحث

اقرأ أيضاً

148 - H. Xiao , T. Hu , T. A. Sayles 2007
Torque and magnetization measurements in magnetic fields $H$ up to 14 T were performed on CeCoIn$_5$ single crystals. The amplitude of the paramagnetic torque shows an $H^{2.3}$ dependence in the mixed state and an $H^{2}$ dependence in the normal st ate. In addition, the mixed-state magnetizations for both $Hparallel c$ and $Hparallel ab$ axes show anomalous behavior after the subtraction of the corresponding paramagnetic contributions as linear extrapolations of the normal-state magnetization. These experimental results point towards a nonlinear paramagnetic magnetization in the mixed state of CeCoIn$_5$, which is a result of the fact that both orbital and Pauli limiting effects dominate in the mixed state.
We study the effects of 10% Cr substitution in Mn sites of Bi0.5Sr0.5MnO3 on the antiferromagnetic (AFM) (TN ~ 110 K) transition using structural, magnetic and electron paramagnetic resonance (EPR) techniques. Field cooled (FC) and zero field cooled (ZFC) magnetization measurements done from 400 K down to 4 K show that the compound is in the paramagnetic (PM) phase till 50 K where it undergoes a transition to a short range ferromagnetic phase (FM). Electron paramagnetic resonance measurements performed in the temperature range 300 K till 80 K conform with the magnetization measurements as symmetric signals are observed owing to the paramagnetic phase. Below 80 K, signals become asymmetric. Electron paramagnetic resonance intensity peaks at ~ 110 K, the decreasing intensity below this temperature confirming the presence of antiferromagnetism. We conclude that below 50 K the magnetization and EPR results are consistent with a cluster glass phase of BSMCO, where ferromagnetic clusters coexist with an antiferromagnetic background.
123 - H. Xiao , T. Hu , T. A. Sayles 2008
Magnetization and torque measurements were performed on CeCoIn$_5$ single crystals to study the mixed-state thermodynamics. These measurements allow the determination of both paramagnetic and vortex responses in the mixed-state magnetization. The par amagnetic magnetization is suppressed in the mixed state with the spin susceptibility increasing with increasing magnetic field. The dependence of spin susceptibility on magnetic field is due to the fact that heavy electrons contribute both to superconductivity and paramagnetism and a large Zeeman effect exists in this system. No anomaly in the vortex response was found within the investigated temperature and field range.
The insulating pyrochlore compound Nd2Sn2O7 has been shown to undergo a second order magnetic phase transition at Tc ~ 0.91 K to a noncoplanar all-in--all-out magnetic structure of the Nd3+ magnetic moments. An anomalously slow paramagnetic spin dyna mics has been evidenced from neutron backscattering and muon spin relaxation (muSR). In the case of muSR this has been revealed through the strong effect of a 50 mT longitudinal field on the spin-lattice relaxation rate. Here, motivated by a recent successful work performed for Yb2Ti2O7 and Yb2Sn2O7, analyzing the shape of the muSR longitudinal polarization function, we substantiate the existence of extremely slow paramagnetic spin dynamics in the microsecond time range for Nd2Sn2O7. Between 1.7 and 7 K, this time scale is temperature independent. This suggests a double spin-flip tunneling relaxation mechanism to be at play, probably involving spin substructures such as tetrahedra. Unexpectedly, the standard deviation of the field distribution at the muon site increases as the system is cooled. This exotic spin dynamics is in sharp contrast with the dynamics above 100 K which is driven by the Orbach relaxation mechanism involving single Nd3+ magnetic moments.
We report on the discovery of a novel triangular phase regime in the system La1-xSrxMnO3 by means of electron spin resonance and magnetic susceptibility measurements. This phase is characterized by the coexistence of ferromagnetic entities within the globally paramagnetic phase far above the magnetic ordering temperature. The nature of this phase can be understood in terms of Griffiths singularities arising due to the presence of correlated quenched disorder in the orthorhombic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا