ترغب بنشر مسار تعليمي؟ اضغط هنا

Driven surface diffusion with detailed balance and elastic phase transitions

153   0   0.0 ( 0 )
 نشر من قبل O. Stenull
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Driven surface diffusion occurs, for example, in molecular beam epitaxy when particles are deposited under an oblique angle. Elastic phase transitions happen when normal modes in crystals become soft due to the vanishing of certain elastic constants. We show that these seemingly entirely disparate systems fall under appropriate conditions into the same universality class. We derive the field theoretic Hamiltonian for this universality class, and we use renormalized field theory to calculate critical exponents and logarithmic corrections for several experimentally relevant quantities.



قيم البحث

اقرأ أيضاً

607 - V.O. Kharchenko 2008
We present a comprehensive study of the phase transitions in the single-field reaction-diffusion stochastic systems with field-dependent mobility of a power-low form and the internal fluctuations. Using variational principles and mean-field theory it was shown that the noise can sustain spatial patterns and leads to disordering phase transitions. We have shown that the phase transitions can be of critical or non-critical character.
116 - Dominik Lips , Artem Ryabov , 2020
Driven diffusive systems constitute paradigmatic models of nonequilibrium physics. Among them, a driven lattice gas known as the asymmetric simple exclusion process (ASEP) is the most prominent example for which many intriguing exact results have bee n obtained. After summarizing key findings, including the mapping of the ASEP to quantum spin chains, we discuss the recently introduced Brownian asymmetric simple exclusion process (BASEP) as a related class of driven diffusive system with continuous space dynamics. In the BASEP, driven Brownian motion of hardcore-interacting particles through one-dimensional periodic potentials is considered. We study whether current-density relations of the BASEP can be considered as generic for arbitrary periodic potentials and whether repulsive particle interactions other than hardcore lead to similar results. Our findings suggest that shapes of current-density relations are generic for single-well periodic potentials and can always be attributed to the interplay of a barrier reduction, blocking and exchange symmetry effect. This implies that in general up to five different phases of nonequilibrium steady states are possible for such potentials. The phases can occur in systems coupled to particle reservoirs, where the bulk density is the order parameter. For multiple-well periodic potentials, more complex current-density relations are possible and more phases can appear. Taking a repulsive Yukawa potential as an example, we show that the effects of barrier reduction and blocking on the current are also present. The exchange symmetry effect requires hardcore interactions and we demonstrate that it can still be identified when hardcore interactions are combined with weak Yukawa interactions.
Large deviation functions are an essential tool in the statistics of rare events. Often they can be obtained by contraction from a so-called level 2 large deviation {em functional} characterizing the empirical density of the underlying stochastic pro cess. For Langevin systems obeying detailed balance, the explicit form of this functional has been known ever since the mathematical work of Donsker and Varadhan. We rederive the Donsker-Varadhan result by using stochastic path-integrals and then generalize it to situations without detailed balance including non-equilibrium steady states. The proper incorporation of the empirical probability flux turns out to be crucial. We elucidate the relation between the large deviation functional and different notions of entropy production in stochastic thermodynamics and discuss some aspects of the ensuing contractions. Finally, we illustrate our findings with examples.
104 - C. A. Marsh , P. V. Coveney 1998
An extension of the H-theorem for dissipative particle dynamics (DPD) to the case of a multi-component fluid is made. Detailed balance and an additional H-theorem are proved for an energy-conserving version of the DPD algorithm. The implications of t hese results for the statistical mechanics of the method are discussed.
We show that near a second order phase transition in a two-component elastic medium of size L in two dimensions, where the local elastic deformation-order parameter couplings can break the inversion symmetry of the order parameter, the elastic moduli i diverges with the variance of the local displacement fluctuations scaling as $[ln(L/a_0)]^{2/3}$ and the local displacement correlation function scaling as $[ln(r/a_0)]^{2/3}$ for weak inversion-asymmetryThe elastic constants can also vanish for system size exceeding a non-universal value, making the system unstable for strong asymmetry, where a 0 is a small-scale cut-off. We show that the elastic deformation-order parameter couplings can make the phase transition first order, when the elastic modulii do not diverge, but shows a jump proportional to the jump in the order parameter, across the transition temperature. For a bulk system, the elastic stiffness does not diverge for weak asymmetry, but can vanish across a second order transition giving instability for strong asymmetry, or displays jumps across a first order transition. In-vitro experiments on binary fluids embedded in a polymerized network, magnetic colloidal crystals or magnetic crystals could test these predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا