ﻻ يوجد ملخص باللغة العربية
A reduced two dimensional model is used to study Ketene isomerization reaction. In light of recent results by Ulusoy textit{et al.} [J. Phys. Chem. A {bf 117}, 7553 (2013)], the present work focuses on the generalization of the roaming mechanism to the Ketene isomerization reaction by applying our phase space approach previously used to elucidate the roaming phenomenon in ion-molecule reactions. Roaming is again found be associated with the trapping of trajectories in a phase space region between two dividing surfaces; trajectories are classified as reactive or nonreactive, and are further naturally classified as direct or non-direct (roaming). The latter long-lived trajectories are trapped in the region of non-linear mechanical resonances, which in turn define alternative reaction pathways in phase space. It is demonstrated that resonances associated with periodic orbits provide a dynamical explanation of the quantum mechanical resonances found in the isomerization rate constant calculations by Gezelter and Miller [J. Chem. Phys. {bf 103}, 7868-7876 (1995)]. Evidence of the trapping of trajectories by `sticky resonant periodic orbits is provided by plotting Poincare surfaces of section, and a gap time analysis is carried out in order to investigate the statistical assumption inherent in transition state theory for Ketene isomerization.
A model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition sta
We provide a dynamical interpretation of the recently identified `roaming mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/uns
We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori it is possible to define phase space dividing surfaces th
We explore both classical and quantum dynamics of a model potential exhibiting a caldera: that is, a shallow potential well with two pairs of symmetry related index one saddles associated with entrance/exit channels. Classical trajectory simulations
In this study, we analyze how changes in the geometry of a potential energy surface in terms of depth and flatness can affect the reaction dynamics. We formulate depth and flatness in the context of one and two degree-of-freedom (DOF) Hamiltonian nor