ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Determination of Definitive Parameters for the Long Period Cepheid S Vulpeculae

110   0   0.0 ( 0 )
 نشر من قبل David Turner Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David G. Turner




اسأل ChatGPT حول البحث

A new compilation of UBV data for stars near the Cepheid S Vul incorporates BV observations from APASS and NOMAD to augment UBV observations published previously. A reddening analysis yields mean colour excesses and distance moduli for two main groups of stars in the field: the sparse cluster Turner 1 and an anonymous background group of BA stars. The former appears to be 1.07+-0.12 kpc distant and reddened by E(B-V)=0.45+-0.05, with an age of 10^9 yrs. The previously overlooked latter group is 3.48+-0.19 kpc distant and reddened by E(B-V)=0.78+-0.02, with an age of 1.3x10^7 yrs. Parameters inferred for S Vul under the assumption that it belongs to the distant group, as also argued by 2MASS data, are all consistent with similar results for other cluster Cepheids and Cepheid-like supergiants.



قيم البحث

اقرأ أيضاً

111 - Pierre Kervella 2020
The Milky Way Cepheid RS Puppis is a particularly important calibrator for the Leavitt law (the Period-Luminosity relation). It is a rare, long period pulsator (P=41.5 days), and a good analog of the Cepheids observed in distant galaxies. It is the o nly known Cepheid to be embedded in a large (~0.5 pc) dusty nebula, that scatters the light from the pulsating star. Due to the light travel time delay introduced by the scattering on the dust, the brightness and color variations of the Cepheid imprint spectacular light echoes on the nebula. I here present a brief overview of the studies of this phenomenon, in particular through polarimetric imaging obtained with the HST/ACS camera. These observations enabled us to determine the geometry of the nebula and the distance of RS Pup. This distance determination is important in the context of the calibration of the Baade-Wesselink technique and of the Leavitt law.
111 - V. Hocde , N. Nardetto , A. Matter 2021
The nature of circumstellar envelopes (CSE) around Cepheids is still a matter of debate. The physical origin of their infrared (IR) excess could be either a shell of ionized gas, or a dust envelope, or both. This study aims at constraining the geomet ry and the IR excess of the environment of the long-period Cepheid $ell$ Car (P=35.5 days) at mid-IR wavelengths to understand its physical nature. We first use photometric observations in various bands and Spitzer Space Telescope spectroscopy to constrain the IR excess of $ell$ Car. Then, we analyze the VLTI/MATISSE measurements at a specific phase of observation, in order to determine the flux contribution, the size and shape of the environment of the star in the L band. We finally test the hypothesis of a shell of ionized gas in order to model the IR excess. We report the first detection in the L band of a centro-symmetric extended emission around l Car, of about 1.7$R_star$ in FWHM, producing an excess of about 7.0% in this band. In the N band, there is no clear evidence for dust emission from VLTI/MATISSE correlated flux and Spitzer data. On the other side, the modeled shell of ionized gas implies a more compact CSE ($1.13pm0.02,R_star$) and fainter (IR excess of 1% in the L band). We provide new evidences for a compact CSE of $ell$ Car and we demonstrate the capabilities of VLTI/MATISSE for determining common properties of CSEs. While the compact CSE of $ell$ Car is probably of gaseous nature, the tested model of a shell of ionized gas is not able to simultaneously reproduce the IR excess and the interferometric observations. Further Galactic Cepheids observations with VLTI/MATISSE are necessary for determining the properties of CSEs, which may also depend on both the pulsation period and the evolutionary state of the stars.
Galactic starburst clusters play a twin role in astrophysics, serving as laboratories for the study of stellar physics and also delineating the structure and recent star formation history of the Milky Way. In order to exploit these opportunities we h ave undertaken a multi-epoch spectroscopic survey of the red supergiant dominated young massive clusters thought to be present at both near and far ends of the Galactic Bar. Significant spectroscopic variability suggestive of radial pulsations was found for the yellow supergiant VdBH 222 #505. Follow-up photometric investigations revealed modulation with a period of ~23.325d; both timescale and pulsational profile are consistent with a Cepheid classification. As a consequence #505 may be recognised as one of the longest period Galactic cluster Cepheids identified to date and hence of considerable use in constraining the bright end of the period/luminosity relation at solar metallicities. In conjunction with extant photometry we infer a distance of ~6kpc for VdBH222 and an age of ~20Myr. This results in a moderate reduction in both integrated cluster mass (~2x10^4Msun) and the initial stellar masses of the evolved cluster members (~10Msun). As such, VdBH222 becomes an excellent test-bed for studying the properties of some of the lowest mass stars observed to undergo type-II supernovae. Moreover, the distance is in tension with a location of VdBH 222 at the far end of the Galactic Bar. Instead a birthsite in the near 3kpc arm is suggested; providing compelling evidence of extensive recent star formation in a region of the inner Milky Way which has hitherto been thought to be devoid of such activity.
The long-period Cepheid RS Pup is surrounded by a large dusty nebula reflecting the light from the central star. Due to the changing luminosity of the central source, light echoes propagate into the nebula. This remarkable phenomenon was the subject of Paper I.The origin and physical properties of the nebula are however uncertain: it may have been created through mass loss from the star itself, or it could be the remnant of a pre-existing interstellar cloud. Our goal is to determine the 3D structure of the nebula, and estimate its mass. Knowing the geometrical shape of the nebula will also allow us to retrieve the distance of RS Pup in an unambiguous manner using a model of its light echoes (in a forthcoming work). The scattering angle of the Cepheid light in the circumstellar nebula can be recovered from its degree of linear polarization. We thus observed the nebula surrounding RS Pup using the polarimetric imaging mode of the VLT/FORS instrument, and obtained a map of the degree and position angle of linear polarization. From our FORS observations, we derive a 3D map of the distribution of the dust, whose overall geometry is an irregular and thin layer. The nebula does not present a well-defined symmetry. Using a simple model, we derive a total dust mass of M(dust) = 2.9 +/- 0.9 Msun for the dust within 1.8 arcmin of the Cepheid. This translates into a total mass of M(gas+dust) = 290 +/- 120 Msun, assuming a dust-to-gas ratio of 1.0 +/- 0.3 %. The high mass of the dusty nebula excludes that it was created by mass-loss from the star. However, the thinness nebula is an indication that the Cepheid participated to its shaping, e.g. through its radiation pressure or stellar wind. RS Pup therefore appears as a regular long-period Cepheid located in an exceptionally dense interstellar environment.
The parameters for the newly-discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically-observed B and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04 s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V)=0.33+-0.02 and a luminosity of <Mv>=-3.15+-0.07 s.e., consistent with overtone pulsation (P_FM=2.75 d), as also implied by the Cepheids light curve parameters, rate of period increase, and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimates for SU Cas inferred from cluster ZAMS fitting, its pulsation parallax derived from the infrared surface brightness technique, and Hipparcos parallaxes, which all agree to within a few percent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا