ﻻ يوجد ملخص باللغة العربية
A new approach for robust Hinfty filtering for a class of Lipschitz nonlinear systems with time-varying uncertainties both in the linear and nonlinear parts of the system is proposed in an LMI framework. The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting Hinfty filter guarantees asymptotic stability of the estimation error dynamics with exponential convergence and is robust against nonlinear additive uncertainty and time-varying parametric uncertainties. Explicit bounds on the nonlinear uncertainty are derived based on norm-wise and element-wise robustness analysis.
This work studies the design of safe control policies for large-scale non-linear systems operating in uncertain environments. In such a case, the robust control framework is a principled approach to safety that aims to maximize the worst-case perform
This paper proposes a fully distributed robust state-estimation (D-RBSE) method that is applicable to multi-area power systems with nonlinear measurements. We extend the recently introduced bilinear formulation of state estimation problems to a robus
A novel adaptive control approach is proposed to solve the globally asymptotic state stabilization problem for uncertain pure-feedback nonlinear systems which can be transformed into the pseudo-affine form. The pseudo-affine pure-feedback nonlinear s
In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This
Increasingly demanding performance requirements for dynamical systems motivates the adoption of nonlinear and adaptive control techniques. One challenge is the nonlinearity of the resulting closed-loop system complicates verification that the system