ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin nematic interaction in multiferroic compound Ba$_{2}$CoGe$_{2}$O$_{7}$

134   0   0.0 ( 0 )
 نشر من قبل Takatsugu Masuda
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the existence of the spin nematic interactions in an easy-plane type antiferromagnet Ba$_{2}$CoGe$_{2}$O$_{7}$ by exploring the magnetic anisotropy and spin dynamics. Combination of neutron scattering and magnetic susceptibility measurements reveals that the origin of the in-plane anisotropy is an antiferro-type interaction of the spin nematic operator. The relation between the nematic operator and the electric polarization in the ligand symmetry of this compound is presented. The introduction of the spin nematic interaction is useful to understand the physics of spin and electric dipole in multiferroic compounds.



قيم البحث

اقرأ أيضاً

Magnetic structure of the multiferroic Ca$_{2}$CoSi$_{2}$O$_{7}$ was determined by neutron diffraction techniques. Combination of the polycrystalline and single-crystal samples experiments revealed a collinear antiferromagnetic structure with the eas y axis along $<$100$>$ directions. The dielectric state was discussed in the framework of the spin-dependent $d$-$p$ hybridization mechanism, leading to the realization of the antiferroelectric structure. The origin of the magnetic anisotropy was discussed in comparison with the isostructural Ba$_{2}$CoGe$_{2}$O$_{7}$.
80 - J. Vit , J. Viirok , L. Peedu 2021
Non-reciprocal directional dichroism assigns an optical diode-like property to non-centrosymmetric magnets, making them appealing for low-dissipation optical devices. However, the direct electric control of this phenomenon at constant temperatures is scarce. In Ba$_2$CoGe$_2$O$_7$, we demonstrate the isothermal electric switch between domains possessing opposite magnetoelectric susceptibilities. Combining THz spectroscopy and multiboson spin-wave analysis, we show that unbalancing the domain population realizes the non-reciprocal light absorption of spin excitations.
We report on spherical neutron polarimetry and unpolarized neutron diffraction in zero magnetic field as well as flipping ratio and static magnetization measurements in high magnetic fields on the multiferroic square lattice antiferromagnet Ba$_2$CoG e$_2$O$_7$. We found that in zero magnetic field the magnetic space group is $Cmm2$ with sublattice magnetization parallel to the [100] axis of this orthorhombic setting. The spin canting has been found to be smaller than $0.2^circ$ in the ground state. This assignment is in agreement with the field-induced changes of the magnetic domain structure below 40 mT as resolved by spherical neutron polarimetry. The magnitude of the ordered moment has been precisely determined. Above the magnetic ordering temperature short-range magnetic fluctuations are observed. Based on the high-field magnetization data, we refined the parameters of the recently proposed microscopic spin model describing the multiferroic phase of Ba$_2$CoGe$_2$O$_7$.
152 - M. Kofu , J.-H. Kim , S. Ji 2008
Using single crystal inelastic neutron scattering with and without application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba$_3$Cr$_2$O$_8$. Even without field, we found that there exi st three singlet-to-triplet excitation modes in $(h,h,l)$ scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr$^{5+} (3d^1)$. The strong intradimer coupling of $J_0 = 2.38(2)$ meV and weak interdimer interactions ($|J_{rm inter}| leq 0.52(2)$ meV) makes Ba$_3$Cr$_2$O$_8$ a good model system for weakly-coupled $s = 1/2$ quantum spin dimers.
528 - H. Kuroe , K. Aoki , T. Sato 2013
We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the ferroelectricity coexist. The asymmetry time spectra taken at RIKEN-RAL pulsed muon facility show a drastic change at $T_{rm N}$. At low temperatures the weakly beating oscillation caused by the static internal magnetic fields in the antiferromagnetic phase was observed in Cu$_{3}$Mo$_{2}$O$_{9}$ and the lightly ($0.5%$) Zn-doped sample. From the fitting of the oscillating term, we obtain the order parameter in these samples: ferromagnetic moment in two sublattices of antiferromagnet. In the heavily ($5.0%$) Zn-doped sample, the muon-spin oscillation is rapidly damped. The frequency-domain spectrum of this sample suggests a formation of magnetic superstructure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا