ﻻ يوجد ملخص باللغة العربية
We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo0.75Ge0.25 thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system dark count rates below 500 counts per second. Operation in a Gifford-McMahon (GM) cryocooler at 2.5 K is possible with system detection efficiencies (SDE) exceeding 20% for SNSPDs which have not been optimized for high detection efficiency.
We demonstrate high-efficiency superconducting nanowire single-photon detectors (SNSPDs) fabricated from MoSi thin-films. We measure a maximum system detection efficiency (SDE) of 87 +- 0.5 % at 1542 nm at a temperature of 0.7 K, with a jitter of 76
We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens n
Using two-temperature model coupled with modified time-dependent Ginzburg-Landau equation we calculate the delay time $tau_d$ in appearance of growing normal domain in the current-biased superconducting strip after absorption of the single photon. We
We estimate the depairing current of superconducting nanowire single photon detectors (SNSPDs) by studying the dependence of the nanowires kinetic inductance on their bias current. The kinetic inductance is determined by measuring the resonance frequ
We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on ultrathin NbN films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magne