ﻻ يوجد ملخص باللغة العربية
Ground-based gravitational-wave detectors are based on high precision laser interferometry. One promising technique to improve the detectors sensitivity is the detuning of an optical cavity, which enhances the signal at around certain frequencies for target astronomical sources. The detuning, however, involves technical noise due to an asymmetry of the control sidebands, which includes photo-detector noise and oscillator-phase noise. Here, we introduce a solution to reduce the two kinds of excess noise using an amplitude-modulation sideband that compensates the asymmetry. The solution is planned to be implemented in the Japanese second-generation gravitational-wave detector KAGRA.
KAGRA is a newly build gravitational-wave observatory, a laser interferometer with 3 km arm length, located in Kamioka, Gifu, Japan. In this paper in the series of KAGRA-featured articles, we discuss the science targets of KAGRA projects, considering
We theoretically and experimentally study the noise of a class-A dual-frequency vertical external cavity surface emitting laser operating at Cesium clock wavelength. The intensity noises of the two orthogonally polarized modes and the phase noise of
We present a Galerkin-Collocation domain decomposition algorithm applied to the evolution of cylindrical unpolarized gravitational waves. We show the effectiveness of the algorithm in reproducing initial data with high localized gradients and in prov
Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable op
KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRAs possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-o