ﻻ يوجد ملخص باللغة العربية
Significant progress has been made in spatial resolution using environmental transmission electron microscopes (ETEM), which now enables atomic resolution visualization of structural transformation under variable temperature and gas environments close to materials real operational conditions. Structural transformations are observed by recording images or diffraction patterns at various time intervals using a video camera or by taking snap shots using electron pulses. While time resolution at 15 ns has been reported using pulsed electron beams, the time interval that can be recorded by this technique is currently very limited. For longer recording, however, time resolution inside ETEM has been limited by electron cameras to ~1/30 seconds for a long time. Using the recently developed direct electron detection technology, we have significantly improved the time resolution of ETEM to 2.5 ms (milliseconds) for full frame or 0.625 ms for 0.25 frames.
Nucleation plays a critical role in many physical and biological phenomena ranging from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases. However, nucleation is a challenging process
We studied ZrO2-La2/3Sr1/3MnO3 pillar matrix thin films which were found to show anomalous magnetic and electron transport properties controlled by the amount of ZrO2. With the application of an aberration corrected transmission electron microscope,
High-resolution TEM (HRTEM) is a powerful tool for structure characterization. However, methylammonium lead iodide (MAPbI3) perovskite is highly sensitive to electron beams and easily decompose into lead iodide (PbI2). Universal misidentifications th
We propose a method to determine the direction of surface magnetization and local magnetic moments on the atomic scale. The method comprises high resolution scanning tunneling microscope experiments in conjunction with first principles simulations of
The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO$_2$) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the sa