ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of [S III]{lambda}{lambda}9096, 9532 emitters at z = 1.34 and 1.23

88   0   0.0 ( 0 )
 نشر من قبل FangXia An
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. X. An




اسأل ChatGPT حول البحث

A study of [S III]$lambdalambda9096,9532$ emitters at $z$ = 1.34 and 1.23 is presented using our deep narrow-band $H_2S1$ (centered at 2.13 $mu$m) imaging survey of the Extended Chandra Deep Field South (ECDFS). We combine our data with multi-wavelength data of ECDFS to build up spectral energy distributions (SEDs) from the $U$ to the $K_{s}$-band for emitter candidates selected with strong excess in $H_2S1 - K_{s}$ and derive photometric redshifts, line luminosities, stellar masses and extinction. A sample of 14 [S III] emitters are identified with $H_2S1<22.8$ and $K_{rm s}<24.8$ (AB) over 381 arcmin$^{2}$ area, having [S III] line luminosity $L_{[SIII]}= sim 10^{41.5-42.6}$erg s$^{-1}$. None of the [S III] emitters is found to have X-ray counterpart in the deepest Chandra 4 Ms observation, suggesting that they are unlikely powered by AGN. HST/ACS F606W and HST/WFC3 F160W images show their rest-frame UV and optical morphologies. About half of the [S III] emitters are mergers and at least one third are disk-type galaxies. Nearly all [S III] emitters exhibit a prominent Balmer break in their SEDs, indicating the presence of a significant post-starburst component. Taken together, our results imply that both shock heating in post-starburst and photoionization caused by young massive stars are likely to excite strong [S III] emission lines. We conclude that the emitters in our sample are dominated by star-forming galaxies with stellar mass $8.7<log (M/M_{sun})<9.9$.



قيم البحث

اقرأ أيضاً

We present Lya and UV-nebular emission line properties of bright Lya emitters (LAEs) at z=6-7 with a luminosity of log L_Lya/[erg s-1] = 43-44 identified in the 21-deg2 area of the SILVERRUSH early sample developed with the Subaru Hyper Suprime-Cam ( HSC) survey data. Our optical spectroscopy newly confirm 21 bright LAEs with clear Lya emission, and contribute to make a spectroscopic sample of 96 LAEs at z=6-7 in SILVERRUSH. From the spectroscopic sample, we select 7 remarkable LAEs as bright as Himiko and CR7 objects, and perform deep Keck/MOSFIRE and Subaru/nuMOIRCS near-infrared spectroscopy reaching the 3sigma-flux limit of ~ 2x10^{-18} erg s-1 for the UV-nebular emission lines of He II1640, C IV1548,1550, and O III]1661,1666. Except for one tentative detection of C IV, we find no strong UV-nebular lines down to the flux limit, placing the upper limits of the rest-frame equivalent widths (EW_0) of ~2-4 A for He II, C IV, and O III] lines. Here we also investigate the VLT/X-SHOOTER spectrum of CR7 whose 6 sigma detection of He II is claimed by Sobral et al. Although two individuals and the ESO-archive service carefully re-analyze the X-SHOOTER data that are used in the study of Sobral et al., no He II signal of CR7 is detected, supportive of weak UV-nebular lines of the bright LAEs even for CR7. Spectral properties of these bright LAEs are thus clearly different from those of faint dropouts at z~7 that have strong UV-nebular lines shown in the various studies. Comparing these bright LAEs and the faint dropouts, we find anti-correlations between the UV-nebular line EW_0 and UV-continuum luminosity, which are similar to those found at z~2-3.
Emission line galaxies (ELGs) are used in several ongoing and upcoming surveys (SDSS-IV/eBOSS, DESI) as tracers of the dark matter distribution. Using a new galaxy formation model, we explore the characteristics of [OII] emitters, which dominate opti cal ELG selections at $zsimeq 1$. Model [OII] emitters at $0.5<z<1.5$ are selected to mimic the DEEP2, VVDS, eBOSS and DESI surveys. The luminosity functions of model [OII] emitters are in reasonable agreement with observations. The selected [OII] emitters are hosted by haloes with $M_{rm halo}geq 10^{10.3}h^{-1}{rm M}_{odot}$, with ~90% of them being central star-forming galaxies. The predicted mean halo occupation distributions of [OII] emitters has a shape typical of that inferred for star-forming galaxies, with the contribution from central galaxies, $langle N rangle_{left[OIIright], cen}$, being far from the canonical step function. The $langle N rangle_{left[OIIright], cen}$ can be described as the sum of an asymmetric Gaussian for disks and a step function for spheroids, which plateaus below unity. The model [OII] emitters have a clustering bias close to unity, which is below the expectations for eBOSS and DESI ELGs. At $zsim 1$, a comparison with observed g-band selected galaxy, which are expected to be dominated by [OII] emitters, indicates that our model produces too few [OII] emitters that are satellite galaxies. This suggests the need to revise our modelling of hot gas stripping in satellite galaxies.
Massive stars have a strong impact on their local environments. However, how stellar feedback regulates star formation is still under debate. In this context, we studied the chemical properties of 80 dense cores in the Orion molecular cloud complex c omposed of the Orion A (39 cores), B (26 cores), and lambda Orionis (15 cores) clouds using multiple molecular line data taken with the Korean Very Long Baseline Interferometry Network (KVN) 21-m telescopes. The lambda Orionis cloud has an H ii bubble surrounding the O-type star lambda Ori, and hence it is exposed to the ultraviolet (UV) radiation field of the massive star. The abundances of C2H and HCN, which are sensitive to UV radiation, appear to be higher in the cores in the lambda Orionis cloud than those in the Orion A and B clouds, while the HDCO to H2CO abundance ratios show an opposite trend, indicating a warmer condition in the lambda Orionis cloud. The detection rates of dense gas tracers such as the N2H+, HCO+, and H13CO+ lines are also lower in the lambda Orionis cloud. These chemical properties imply that the cores in the lambda Orionis cloud are heated by UV photons from lambda Ori. Furthermore, the cores in the lambda Orionis cloud do not show any statistically significant excess in the infall signature of HCO+ (1 - 0), unlike the Orion A and B clouds. Our results support the idea that feedback from massive stars impacts star formation in a negative way by heating and evaporating dense materials, as in the lambda Orionis cloud.
In this paper, we present a comprehensive analysis of star-forming galaxies (SFGs) at intermediate redshifts (z~1). We combine the ultra-deep optical spectro-photometric data from the Survey for High-z Absorption Red and Dead Sources (SHARDS) with de ep UV-to-FIR observations in the GOODS-N field. Exploiting two of the 25 SHARDS medium-band filters, F687W17 and F823W17, we select [OII] emission line galaxies at z~0.84 and z~1.23 and characterize their physical properties. Their rest-frame equivalent widths (EW$_{mathrm{rf}}$([OII])), line fluxes, luminosities, star formation rates (SFRs) and dust attenuation properties are investigated. The evolution of the EW$_{mathrm{rf}}$([OII]) closely follows the SFR density evolution of the universe, with a trend of EW$_{mathrm{rf}}$([OII])$propto$(1+z)$^3$ up to redshift z~1, followed by a possible flattening. The SF properties of the galaxies selected on the basis of their [OII] emission are compared with complementary samples of SFGs selected by their MIR and FIR emission, and also with a general mass-selected sample of galaxies at the same redshifts. We demonstrate observationally that the UVJ diagram (or, similarly, a cut in the specific SFR) is only partially able to distinguish the quiescent galaxies from the SFGs. The SFR-M$_*$ relation is investigated for the different samples, yelding a logarithmic slope ~1, in good agreement with previous results. The dust attenuations derived from different SFR indicators (UV(1600), UV(2800), [OII], IR) are compared and show clear trends with respect to both the stellar mass and total SFR, with more massive and highly star-forming galaxies being affected by stronger dust attenuation.
63 - Rocco Coppejans 2016
High-redshift radio-loud quasars are used to, among other things, test the predictions of cosmological models, set constraints on black hole growth in the early universe and understand galaxy evolution. Prior to this paper, 20 extragalactic radio sou rces at redshifts above 4.5 have been imaged with very long baseline interferometry (VLBI). Here we report on observations of an additional ten z>4.5 sources at 1.7 and 5 GHz with the European VLBI Network (EVN), thereby increasing the number of imaged sources by 50%. Combining our newly observed sources with those from the literature, we create a substantial sample of 30 z>4.5 VLBI sources, allowing us to study the nature of these objects. Using spectral indices, variability and brightness temperatures, we conclude that of the 27 sources with sufficient information to classify, the radio emission from one source is from star formation, 13 are flat-spectrum radio quasars and 13 are steep-spectrum sources. We also argue that the steep-spectrum sources are off-axis (unbeamed) radio sources with rest-frame self-absorption peaks at or below GHz frequencies and that these sources can be classified as gigahertz peaked-spectrum (GPS) and megahertz peaked-spectrum (MPS) sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا