ﻻ يوجد ملخص باللغة العربية
We present simple expressions for the relativistic first and second order fractional density perturbations for FL cosmologies with dust, in four different gauges: the Poisson, uniform curvature, total matter and synchronous gauges. We include a cosmological constant and arbitrary spatial curvature in the background. A distinctive feature of our approach is our description of the spatial dependence of the perturbations using a canonical set of quadratic differential expressions involving an arbitrary spatial function that arises as a conserved quantity. This enables us to unify, simplify and extend previous seemingly disparate results. We use the primordial matter and metric perturbations that emerge at the end of the inflationary epoch to determine the additional arbitrary spatial function that arises when integrating the second order perturbation equations. This introduces a non-Gaussianity parameter into the expressions for the second order density perturbation. In the special case of zero spatial curvature we show that the time evolution simplifies significantly, and requires the use of only two non-elementary functions, the so-called growth supression factor at the linear level, and one new function at the second order level. We expect that the results will be useful in applications, for example, studying the effects of primordial non-Gaussianity on the large scale structure of the universe.
In this paper we present four simple expressions for the relativistic first and second order fractional density perturbations for $Lambda$CDM cosmologies in different gauges: the Poisson, uniform curvature, total matter and synchronous gauges. A dist
We numerically solve the Klein-Gordon equation at second order in cosmological perturbation theory in closed form for a single scalar field, describing the method employed in detail. We use the slow-roll version of the second order source term and ar
We numerically calculate the evolution of second order cosmological perturbations for an inflationary scalar field without resorting to the slow-roll approximation or assuming large scales. In contrast to previous approaches we therefore use the full
We examine the covariant properties of generalized models of two-field inflation, with non-canonical kinetic terms and a possibly non-trivial field metric. We demonstrate that kinetic-term derivatives and covariant field derivatives do commute in a p
Inflationary cosmology is the leading explanation of the very early universe. Many different models of inflation have been constructed which fit current observational data. In this work theoretical and numerical methods for constraining the parameter