ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays

196   0   0.0 ( 0 )
 نشر من قبل Yong Tang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the indirect signatures of the Higgs portal $U(1)_X$ vector dark matter (VDM) $X_mu$ from both its pair annihilation and decay. The VDM is stable at renormalizable level by $Z_2$ symmetry, and thermalized by Higgs-portal interactions. It can also decay by some nonrenormalizable operators with very long lifetime at cosmological time scale. If dim-6 operators for VDM decays are suppressed by $10^{16}$ GeV scale, the lifetime of VDM with mass $sim$ 2 TeV is just right for explaining the positron excess in cosmic ray recent observed by PAMELA and AMS02 Collaborations. The VDM decaying into $mu^+ mu^-$ can fit the data, evading various constraints on cosmic rays. We give one UV-complete model as an example. This scenario for Higgs portal decaying VDM with mass around $sim2$ TeV can be tested by DM direct search at XENON1T and at the future colliders by measuring the Higgs self-couplings.



قيم البحث

اقرأ أيضاً

For explaining the AMS-02 cosmic positron excess, which was recently reported, we consider a scenario of thermally produced and decaying dark matter (DM) into the standard model (SM) leptons with an extremely small decay rate, Gamma_{DM} sim 10^{-26} sec.^{-1}. Since the needed DM mass is relatively heavy (700 GeV < m_{DM} < 3000 GeV), we introduce another DM component apart from the lightest supersymmetric particle (LSP). For its (meta-) stability and annihilation into other particles, the new DM should be accompanied with another Z_2 symmetry apart from the R-parity. Sizable renormalizable couplings of the new DM with SM particles, which are necessary for its thermalization in the early universe, cannot destabilize the new DM because of the new Z_2 symmetry. Since the new DM was thermally produced, it can naturally explain the present energy density of the universe. The new DM can decay into the SM leptons (and the LSP) only through non-renormalizable operators suppressed by a superheavy squared mass parameter after the new symmetry is broken around TeV scale. We realize this scenario in a model of gauged vector-like leptons, which was proposed recently for the naturalness of the Higgs boson.
We consider indirect detection of meta-stable dark matter particles decaying into a stable neutral particle and a pair of standard model fermions. Due to the softer energy spectra from the three-body decay, such models could potentially explain the A MS-02 positron excess without being constrained by the Fermi-LAT gamma-ray data and the cosmic ray anti-proton measurements. We scrutinize over different final state fermions, paying special attention to handling of the cosmic ray background and including various contributions from cosmic ray propagation with the help of the textsc{LikeDM} package. It is found that primary decays into an electron-positron pair and a stable neutral particle could give rise to the AMS-02 positron excess and, at the same time, stay unscathed against the gamma-ray and anti-proton constraints. Decays to a muon pair or a mixed flavor electron-muon pair may also be viable depending on the propagation models. Decays to all other standard model fermions are severely disfavored.
363 - Jiang-Hao Yu 2014
We investigate a neutral gauge boson X originated from a hidden U(1) extension of the standard model as the particle dark matter candidate. The vector dark matter interacts with the standard model fermions through heavy fermion mediators. The interac tions give rise to t-channel annihilation cross section in the XX to ff process, which dominates the thermal relic abundance during thermal freeze-out and produces measurable gamma-ray flux in the galactic halo. For a light vector dark matter, if it predominantly couples to the third generation fermions, this model could explain the excess of gamma rays from the galactic center. We show that the vector dark matter with a mass of 20 ~ 40 GeV and that annihilate into the bb and tautau final states provides an excellent description of the observed gamma-ray excess. The parameter space aimed at explaining the gamma-ray excess, could also provide the correct thermal relic density and is compatible with the constraints from electroweak precision data, Higgs invisible decay, and collider searches. We also show the dark matter couplings to the nucleon from the fermion portal interactions are loop-suppressed, and only contribute to the spin-dependent cross section. So the vector dark matter could easily escape the stringent constraints from the direct detection experiments.
We review scenarios in which the particles that account for the Dark Matter (DM) in the Universe interact only through their couplings with the Higgs sector of the theory, the so-called Higgs-portal models. In a first step, we use a general and model -independent approach in which the DM particles are singlets with spin $0,frac12$ or $1$, and assume a minimal Higgs sector with the presence of only the Standard Model (SM) Higgs particle observed at the LHC. In a second step, we discuss non-minimal scenarios in which the spin-$frac12$ DM particle is accompanied by additional lepton partners and consider several possibilities like sequential, singlet-doublet and vector-like leptons. In a third step, we examine the case in which it is the Higgs sector of the theory which is enlarged either by a singlet scalar or pseudoscalar field, an additional two Higgs doublet field or by both; in this case, the matter content is also extended in several ways. Finally, we investigate the case of supersymmetric extensions of the SM with neutralino DM, focusing on the possibility that the latter couples mainly to the neutral Higgs particles of the model which then serve as the main portals for DM phenomenology. In all these scenarios, we summarize and update the present constraints and future prospects from the collider physics perspective, namely from the determination of the SM Higgs properties at the LHC and the search for its invisible decays into DM, and the search for heavier Higgs bosons and the DM companion particles at high-energy colliders. We then compare these results with the constraints and prospects obtained from the cosmological relic abundance as well as from direct and indirect DM searches in astroparticle physics experiments. The complementarity of collider and astroparticle DM searches is investigated in all the considered models.
We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the Type-I seesaw mechanism and simultan eously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a Type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxies and Galactic Center gamma-rays observations, and Alpha Magnetic Spectrometer - 02 antiprotons observations, and also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic Center gamma ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا