ﻻ يوجد ملخص باللغة العربية
We use high dynamic range, high-resolution L-band spectroscopy to measure the radial velocity variations of the hot Jupiter in the tau Bootis planetary system. The detection of an exoplanet by the shift in the stellar spectrum alone provides a measure of the planets minimum mass, with the true mass degenerate with the unknown orbital inclination. Treating the tau Boo system as a high flux ratio double-lined spectroscopic binary permits the direct measurement of the planets true mass as well as its atmospheric properties. After removing telluric absorption and cross-correlating with a model planetary spectrum dominated by water opacity, we measure a 6-sigma detection of the planet at K_p = 111 +- 5 km/s, with a 1-sigma upper limit on the spectroscopic flux ratio of 10^-4. This radial velocity leads to a planetary orbital inclination of i = 45+3-4degrees and a mass of M_P = 5.90+0.35-0.20 M_ Jup. We report the first detection of water vapor in the atmosphere of a non-transiting hot Jupiter, tau Boo b.
Aims: We aim at detecting H$_2$O in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES. Methods: The H$_2$O absorption lines from the planets atmosphere are Doppler-shifted due to the lar
The upsilon Andromedae system was the first multi-planet system discovered orbiting a main sequence star. We describe the detection of water vapor in the atmosphere of the innermost non-transiting gas giant ups~And~b by treating the star-planet syste
The helium absorption line at 10830 {AA}, originating from the metastable triplet state 2$^3$S, has been suggested as an excellent probe for the extended atmospheres of hot Jupiters and their hydrodynamic escape processes, and has recently been detec
Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the oute
We are on the verge of characterizing the atmospheres of terrestrial exoplanets in the habitable zones of M dwarf stars. Due to their large planet-to-star radius ratios and higher frequency of transits, terrestrial exoplanets orbiting M dwarf stars a