ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity-Flux-Driven Alpha Effect in Laboratory and Astrophysical Plasmas

188   0   0.0 ( 0 )
 نشر من قبل Fatima Ebrahimi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The constraint imposed by magnetic helicity conservation on the alpha effect is considered for both magnetically and flow dominated self-organizing plasmas. Direct numerical simulations are presented for a dominant contribution to the alpha effect, which can be cast in the functional form of a total divergence of an averaged helicity flux, called the helicity-flux-driven alpha ( H$alpha$) effect. Direct numerical simulations of the H$alpha$ effect are prese nted for two examples---the magnetically dominated toroidal plasma unstable to tearing modes, and the flow-dominated accretion disk.



قيم البحث

اقرأ أيضاً

The use of Z-pinch facilities makes it possible to carry out well-controlled and diagnosable laboratory experiments to study laboratory jets with scaling parameters close to those of the jets from young stars. This makes it possible to observe proces ses that are inaccessible to astronomical observations. Such experiments are carried out at the PF-3 facility (plasma focus, Kurchatov Institute), in which the emitted plasma emission propagates along the drift chamber through the environment at a distance of one meter. The paper presents the results of experiments with helium, in which a successive release of two ejections was observed. An analysis of these results suggests that after the passage of the first supersonic ejection, a region with a low concentration is formed behind it, the so-called vacuum trace, due to which the subsequent ejection practically does not experience environmental resistance and propagates being collimated. The numerical modeling of the propagation of two ejections presented in the paper confirms this point of view. Using scaling laws and appropriate numerical simulations of astrophysical ejections, it is shown that this effect can also be significant for the jets of young stars.
A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pre ssure-anisotropic plasmas, allowing for species drifts---a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas (e.g. intracluster medium). Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g., the Alfven ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. The main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvenic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the Alfvenic cascade is fluid, satisfying RMHD equations (with the Alfven speed modified by pressure anisotropy and species drifts), whereas the compressive cascade is kinetic and subject to collisionless damping. Secondly, the organising principle of this turbulence is elucidated in the form of a generalised kinetic free-energy invariant. It is shown that non-Maxwellian features in the distribution function reduce the rate of phase mixing and the efficacy of magnetic stresses; these changes influence the partitioning of free energy amongst the various cascade channels. As the firehose or mirror instability thresholds are approached, the dynamics of the plasma are modified so as to reduce the energetic cost of bending magnetic-field lines or of compressing/rarefying them. Finally, it is shown that this theory can be derived as a long-wavelength limit of non-Maxwellian slab gyrokinetics.
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. Turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic w ith respect to it, and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (2015). At scales at and below the ion Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalisation of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvenic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfven waves transition into kinetic Alfven waves. Secondly, we derive and discuss a general free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfven waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy can cause large variations in the ion-to-electron heating ratio due to the dissipation of Alfvenic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects the turbulent fluctuation spectra, the differential heating of particle species, and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.
Heat flux suppression in collisionless plasmas for a large range of plasma $beta$ is explored using two-dimensional particle-in-cell simulations with a strong, sustained thermal gradient. We find that a transition takes place between whistler-dominat ed (high-$beta$) and double-layer-dominated (low-$beta$) heat flux suppression. Whistlers saturate at small amplitude in the low beta limit and are unable to effectively suppress the heat flux. Electrostatic double layers suppress the heat flux to a mostly constant factor of the free streaming value once this transition happens. The double layer physics is an example of ion-electron coupling and occurs on a scale of roughly the electron Debye length. The scaling of ion heating associated with the various heat flux driven instabilities is explored over the full range of $beta$ explored. The range of plasma-$beta$s studied in this work makes it relevant to the dynamics of a large variety of astrophysical plasmas, including the intracluster medium of galaxy clusters, hot accretion flows, stellar and accretion disk coronae, and the solar wind.
The results of MHD numerical simulations of the formation and development of magnetized jets are presented. Similarity criteria for comparisons of the results of laboratory laser experiments and numerical simulations of astrophysical jets are discuss ed. The results of laboratory simulations of jets generated in experiments at the Neodim laser installation are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا