The First Simultaneous 3.5 and 1.3mm Polarimetric Survey of Active Galactic Nuclei in the Northern Sky


الملخص بالإنكليزية

Short millimeter observations of radio-loud AGN offer the opportunity to study the physics of their inner relativistic jets, from where the bulk millimeter emission is radiated. Millimeter jets are significantly less affected by Faraday rotation and depolarization than in radio. Also, the millimeter emission is dominated by the innermost jet regions, that are invisible in radio owing to synchrotron opacity. We present the first dual frequency simultaneous 86GHz and 229GHz polarimetric survey of all four Stokes parameters of a large sample of 211 radio loud active galactic nuclei, designed to be flux limited at 1Jy at 86GHz. The observations were most of them made in mid August 2010 using the XPOL polarimeter on the IRAM 30 m millimeter radio telescope. Linear polarization detections above 3 sigma median level of ~1.0% are reported for 183 sources at 86GHz, and for 23 sources at 229GHz, where the median 3 sigma level is ~6.0%. We show a clear excess of the linear polarization degree detected at 229GHz with regard to that at 86GHz by a factor of ~1.6, thus implying a progressively better ordered magnetic field for blazar jet regions located progressively upstream in the jet. We show that the linear polarization angle, both at 86 and 229GHz, and the jet structural position angle for both quasars and BL Lacs do not show a clear preference to align in either parallel or perpendicular directions. Our variability study with regard to the 86GHz data from our previous survey points out a large degree variation of total flux and linear polarization in time scales of years by median factors of ~1.5 in total flux, and ~1.7 in linear polarization degree -maximum variations by factors up to 6.3, and ~5, respectively-, with 86% of sources showing linear polarization angles evenly distributed with regard to our previous measurements.

تحميل البحث