ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Spectrum of Cosmic Protons and Helium Nuclei by a Hybrid Measurement at 4300 m a.s.l

101   0   0.0 ( 0 )
 نشر من قبل Zhang Shoushan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured, below the so-called knee, by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100 TeV - 700 TeV). The observed energy spectrum is compatible with a single power law with index gamma=-2.63+/-0.06.



قيم البحث

اقرأ أيضاً

A dramatic increase in the accuracy and statistics of space-borne cosmic ray (CR) measurements has yielded several breakthroughs over the last several years. The most puzzling is the rise in the positron fraction above ~10 GeV over the predictions of the propagation models assuming pure secondary production. The accuracy of the antiproton production cross section is critical for astrophysical applications and searches for new physics since antiprotons in CRs seem to hold the keys to many puzzles including the origin of those excess positrons. However, model calculations of antiproton production in CR interactions with interstellar gas are often employing parameterizations that are out of date or are using outdated physical concepts. That may lead to an incorrect interpretation of antiproton data which could have broad consequences for other areas of astrophysics. In this work, we calculate antiproton production in pp-, pA-, and AA-interactions using EPOS-LHC and QGSJET-II-04, two of the most advanced Monte Carlo (MC) generators tuned to numerous accelerator data including those from the Large Hadron Collider (LHC). We show that the antiproton yields obtained with these MC generators differ by up to an order of magnitude from yields of parameterizations commonly used in astrophysics.
207 - G. Di Sciascio 2014
The ARGO-YBJ detector, located at high altitude in the Cosmic Ray Observatory of Yangbajing in Tibet (4300 m asl, about 600 g/cm2 of atmospheric depth) provides the opportunity to study, with unprecedented resolution, the cosmic ray physics in the pr imary energy region between 10^{12} and 10^{16} eV. The preliminary results of the measurement of all-particle and light-component (i.e. protons and helium) energy spectra between approximately 5 TeV and 5 PeV are reported and discussed. The study of such energy region is particularly interesting because not only it allows a better understanding of the so called knee of the energy spectrum and of its origin, but also provides a powerful cross-check among very different experimental techniques. The comparison between direct measurements by balloons/satellites and the results by surface detectors, implying the knowledge of shower development in the atmosphere, also allows to test the hadronic interaction models currently used for understanding particle and cosmic ray physics up the highest energies.
230 - F. Alemanno , Q. An , P. Azzarello 2021
The measurement of the energy spectrum of cosmic ray helium nuclei from 70 GeV to 80 TeV using 4.5 years of data recorded by the DArk Matter Particle Explorer (DAMPE) is reported in this work. A hardening of the spectrum is observed at an energy of a bout 1.3 TeV, similar to previous observations. In addition, a spectral softening at about 34 TeV is revealed for the first time with large statistics and well controlled systematic uncertainties, with an overall significance of $4.3sigma$. The DAMPE spectral measurements of both cosmic protons and helium nuclei suggest a particle charge dependent softening energy, although with current uncertainties a dependence on the number of nucleons cannot be ruled out.
The measurement of cosmic ray energy spectra, in particular for individual species, is an essential approach in finding their origin. Locating the knees of the spectra is an important part of the approach and has yet to be achieved. Here we report a measurement of the mixed Hydrogen and Helium spectrum using the combination of the ARGO-YBJ experiment and of a prototype Cherenkov telescope for the LHAASO experiment. A knee feature at 640+/-87 TeV, with a clear steepening of the spectrum, is observed. This gives fundamental inputs to galactic cosmic ray acceleration models.
257 - G. DI SCIASCIO 2012
In this paper we report on the observation of the anisotropy of cosmic ray arrival direction at different angular scales with ARGO-YBJ. Evidence of new few-degree excesses throughout the sky region 195$^{circ}leq$ R.A. $leq$ 315$^{circ}$ is presented for the first time. We report also on the measurement of the light-component (p+He) spectrum of primary cosmic rays in the range 5 - 200 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا