ﻻ يوجد ملخص باللغة العربية
The objective of this paper is to further investigate various applications of information Nonanticipative Rate Distortion Function (NRDF) by discussing two working examples, the Binary Symmetric Markov Source with parameter $p$ (BSMS($p$)) with Hamming distance distortion, and the multidimensional partially observed Gaussian-Markov source. For the BSMS($p$), we give the solution to the NRDF, and we use it to compute the Rate Loss (RL) of causal codes with respect to noncausal codes. For the multidimensional Gaussian-Markov source, we give the solution to the NRDF, we show its operational meaning via joint source-channel matching over a vector of parallel Gaussian channels, and we compute the RL of causal and zero-delay codes with respect to noncausal codes.
In this paper, we develop {finite-time horizon} causal filters using the nonanticipative rate distortion theory. We apply the {developed} theory to {design optimal filters for} time-varying multidimensional Gauss-Markov processes, subject to a mean s
The joint nonanticipative rate distortion function (NRDF) for a tuple of random processes with individual fidelity criteria is considered. Structural properties of optimal test channel distributions are derived. Further, for the application example o
A rate-distortion problem motivated by the consideration of semantic information is formulated and solved. The starting point is to model an information source as a pair consisting of an intrinsic state which is not observable, corresponding to the s
The water-filling solution for the quadratic rate-distortion function of a stationary Gaussian source is given in terms of its power spectrum. This formula naturally lends itself to a frequency domain test-channel realization. We provide an alternati
The rate-distortion-perception function (RDPF; Blau and Michaeli, 2019) has emerged as a useful tool for thinking about realism and distortion of reconstructions in lossy compression. Unlike the rate-distortion function, however, it is unknown whethe