ترغب بنشر مسار تعليمي؟ اضغط هنا

Periodic Radio Continuum Emission Associated with the beta Cephei Star V2187 Cyg

142   0   0.0 ( 0 )
 نشر من قبل Sergei Zharikov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mauricio Tapia




اسأل ChatGPT حول البحث

We present new optical time-resolved photometry and medium-resolution spectroscopy of V2187 Cyg. We confirm its classification as a beta Cephei star based on sinusoidal light variations with a period of 0.2539 days and mean amplitudes of 0.037 and 0.042 magnitudes in i and V, respectively. We classified the spectrum of this star B2-3V with no evidence of variations in the profiles of its absorption lines in timescales of hours or days. The stellar spectrum is totally absent of emission lines. We detected unexpected faint radio continuum emission (between 0.4 and 0.8 mJy at 6-cm) showing a sinusoidal variation with a period of 12.8 days. The radio spectrum is thermal. We searched in the Very Large Array archive for radio continuum emission toward other 15 beta Cephei stars. None of these additional stars, some of them much closer to the Sun than V2187 Cyg, was detected, indicating that radio emission is extremely uncommon toward beta Cephei stars.



قيم البحث

اقرأ أيضاً

We present Very Large Array observations at 33.0 GHz that detect emission coincident with $epsilon$ Eridani to within $0rlap.{}07$ (0.2 AU at the distance of this star), with a positional accuracy of $0rlap.{}05$. This result strongly supports the su ggestion of previous authors that the quiescent centimeter emission comes from the star and not from a proposed giant exoplanet with a semi-major axis of $sim1rlap.{}0$ (3.4 AU). The centimeter emission is remarkably flat and is consistent with optically thin free-free emission. In particular, it can be modeled as a stellar wind with a mass loss rate of the order of $6.6 times 10^{-11}~ M_odot ~yr^{-1}$, which is 3,300 times the solar value, exceeding other estimates of this stars wind. However, interpretation of the emission in terms of other thermal mechanisms like coronal free-free and gyroresonance emission cannot be discarded.
We present high angular resolution, high sensitivity 8.46 GHz (3.6 cm) radio continuum observations made toward the core of the HH~92 outflow with the Very Large Array in 2002-2003 and with the Expanded Very Large Array in 2011. We detect a group of three compact sources distributed in a region 2$$ in extension and discuss their nature. We conclude that one of the objects (VLA 1) is the exciting source of the giant outflow associated with HH~92. In the case of HH~34 we present new 43.3 GHz (7 mm) observations that reveal the presence of a structure associated with the exciting source and elongated perpendicular to the highly collimated optical jet in the region. We propose that this 7 mm source is a circumstellar disk with radius of $sim$80 AU and mass of $sim$0.21 $M_odot$.
Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent wit h Murase et al. (2016) that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of $M_{rm ej}gtrsim{rm a few} M_odot$, a neutron star with an age of $t_{rm age} sim 10-100 rm yrs$, an initial spin period of $P_{i} lesssim$ a few ms, and a dipole magnetic field of $B_{rm dip} lesssim {rm a few} times 10^{13} rm G$ can be compatible with the observations. However, in this case, the magnetically-powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with $M_{rm ej} sim 0.1 M_odot$, a younger neutron star with $t_{rm age} sim 1-10$ yrs can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.
The FS CMa stars exhibit bright optical emission-line spectra and strong IR excesses. Very little is known of their radio characteristics. We analyzed archive Very Large Array data to search for radio continuum emission in a sample of them. There are good quality data for seven of the $sim$40 known FS CMa stars. Of these seven stars, five turn out to have associated radio emission. Two of these stars, CI Cam and MWC 300, have been previously reported in the literature as radio emitters. We present and briefly discuss the radio detection of the other three sources: FS CMa (the prototype of the class), AS 381, and MWC 922. The radio emission is most probably of a free-free nature but additional observations are required to better characterize it.
We present results of a {bf comprehensive} asteroseismic modelling of the $beta$ Cephei variable $theta$ Ophiuchi. {bf We call these studies {it complex asteroseismology} because our goal is to reproduce both pulsational frequencies as well as corres ponding values of a complex, nonadiabatic parameter, $f$, defined by the radiative flux perturbation.} To this end, we apply the method of simultaneous determination of the spherical harmonic degree, $ell$, of excited pulsational mode and the corresponding nonadiabatic $f$ parameter from combined multicolour photometry and radial velocity data. Using both the OP and OPAL opacity data, we find a family of seismic models which reproduce the radial and dipole centroid mode frequencies, as well as the $f$ parameter associated with the radial mode. Adding the nonadiabatic parameter to seismic modelling of the B-type main sequence pulsators yields very strong constraints on stellar opacities. In particular, only with one source of opacities it is possible to agree the empirical values of $f$ with their theoretical counterparts. Our results for $theta$ Oph point substantially to preference for the OPAL data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا