ﻻ يوجد ملخص باللغة العربية
We consider noisy non-synchronous discrete observations of a continuous semimartingale with random volatility. Functional stable central limit theorems are established under high-frequency asymptotics in three setups: one-dimensional for the spectral estimator of integrated volatility, from two-dimensional asynchronous observations for a bivariate spectral covolatility estimator and multivariate for a local method of moments. The results demonstrate that local adaptivity and smoothing noise dilution in the Fourier domain facilitate substantial efficiency gains compared to previous approaches. In particular, the derived asymptotic variances coincide with the benchmarks of semiparametric Cramer-Rao lower bounds and the considered estimators are thus asymptotically efficient in idealized sub-experiments. Feasible central limit theorems allowing for confidence are provided.
For a joint model-based and design-based inference, we establish functional central limit theorems for the Horvitz-Thompson empirical process and the Hajek empirical process centered by their finite population mean as well as by their super-populatio
Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit theory for the mean of a function of order statistics is presented. The results include a multivariate central limit theorem and a strong law of
We consider the problem of optimal transportation with general cost between a empirical measure and a general target probability on R d , with d $ge$ 1. We extend results in [19] and prove asymptotic stability of both optimal transport maps and poten
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community.
In this paper, we develop a general approach to proving global and local uniform limit theorems for the Horvitz-Thompson empirical process arising from complex sampling designs. Global theorems such as Glivenko-Cantelli and Donsker theorems, and loca