ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of assisted hopping on thermopower in an interacting quantum dot

258   0   0.0 ( 0 )
 نشر من قبل Anton Ramsak
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the electrical conductance and thermopower of a quantum dot tunnel coupled to external leads described by an extension of the Anderson impurity model which takes into account the assisted hopping processes, i.e., the occupancy-dependence of the tunneling amplitudes. We provide analytical understanding based on scaling arguments and the Schrieffer-Wolff transformation, corroborated by detailed numerical calculations using the numerical renormalization group (NRG) method. The assisted hopping modifies the coupling to the two-particle state, which shifts the Kondo exchange coupling constant and exponentially reduces or enhances the Kondo temperature, breaks the particle-hole symmetry, and strongly affects the thermopower. We discuss the gate-voltage and temperature dependence of the transport properties in various regimes. For a particular value of the assisted hopping parameter we find peculiar discontinuous behaviour in the mixed-valence regime. Near this value, we find very high Seebeck coefficient. We show that, quite generally, the thermopower is a highly sensitive probe of assisted hopping and Kondo correlations.



قيم البحث

اقرأ أيضاً

72 - R. Scheibner 2004
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con ductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model. Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single electron tunneling, Kondo-effect PACS Numbers: 72.20.Pa, 73.23.Hk
Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance plateau emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, or iginates from the strong electron correlation and exchange processes in the quantum dot, and can be regarded as one of the characteristics in quantum spin transport.
We study a device for entangling electrons as cotunneling occurs through a quantum dot where on-site electron-electron interactions $U$ are in place. The main advantage of this device is that single particle processes are forbidden by energy conserva tion as proposed by Oliver et alcite{oli02}. Within this model we calculated two electron transition amplitude, in terms of the T-matrix, to all orders in the coupling to the dot, and consider a finite lead bandwidth. The model filters singlet entangled pairs with the sole requirement of Pauli principle. Feynman paths involving consecutive and doubly occupied dot interfere destructively and produce a transition amplitude minimum at a critical value of the onsite repulsion $U$. Singlet filtering is demonstrated as a function of a gate voltage applied to the dot with a special resonance condition when the dot levels are symmetrically placed about the input lead energy.
134 - Y. N. Fang , S. W. Li , L. C. Wang 2014
The proximity effect (PE) between superconductor and confined electrons can induce the effective pairing phenomena of electrons in nanowire or quantum dot (QD). Through interpreting the PE as an exchange of virtually quasi-excitation in a largely gap ped superconductor, we found that there exists another induced dynamic process. Unlike the effective pairing that mixes the QD electron states coherently, this extra process leads to dephasing of the QD. In a case study, the dephasing time is inversely proportional to the Coulomb interaction strength between two electrons in the QD. Further theoretical investigations imply that this dephasing effect can decrease the quality of the zero temperature mesoscopic electron transportation measurements by lowering and broadening the corresponding differential conductance peaks.
The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechani sm in a wide class of correlated electron systems. Control over single, localised spins has become relevant also in fabricated structures due to the rapid developments in nano-electronics. Experiments have already demonstrated artificial realisations of isolated magnetic impurities at metallic surfaces, nanometer-scale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here, we report an unexpected Kondo effect realised in a few-electron quantum dot containing singlet and triplet spin states whose energy difference can be tuned with a magnetic field. This effect occurs for an even number of electrons at the degeneracy between singlet and triplet states. The characteristic energy scale is found to be much larger than for the ordinary spin-1/2 case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا