ﻻ يوجد ملخص باللغة العربية
We investigate the electrical conductance and thermopower of a quantum dot tunnel coupled to external leads described by an extension of the Anderson impurity model which takes into account the assisted hopping processes, i.e., the occupancy-dependence of the tunneling amplitudes. We provide analytical understanding based on scaling arguments and the Schrieffer-Wolff transformation, corroborated by detailed numerical calculations using the numerical renormalization group (NRG) method. The assisted hopping modifies the coupling to the two-particle state, which shifts the Kondo exchange coupling constant and exponentially reduces or enhances the Kondo temperature, breaks the particle-hole symmetry, and strongly affects the thermopower. We discuss the gate-voltage and temperature dependence of the transport properties in various regimes. For a particular value of the assisted hopping parameter we find peculiar discontinuous behaviour in the mixed-valence regime. Near this value, we find very high Seebeck coefficient. We show that, quite generally, the thermopower is a highly sensitive probe of assisted hopping and Kondo correlations.
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con
Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance plateau emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, or
We study a device for entangling electrons as cotunneling occurs through a quantum dot where on-site electron-electron interactions $U$ are in place. The main advantage of this device is that single particle processes are forbidden by energy conserva
The proximity effect (PE) between superconductor and confined electrons can induce the effective pairing phenomena of electrons in nanowire or quantum dot (QD). Through interpreting the PE as an exchange of virtually quasi-excitation in a largely gap
The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechani