ﻻ يوجد ملخص باللغة العربية
We generalize the notion of a graph automatic group introduced by Kharlampovich, Khoussainov and Miasnikov (arXiv:1107.3645) by replacing the regular languages in their definition with more powerful language classes. For a fixed language class $mathcal C$, we call the resulting groups $mathcal C$-graph automatic. We prove that the class of $mathcal C$-graph automatic groups is closed under change of generating set, direct and free product for certain classes $mathcal C$. We show that for quasi-realtime counter-graph automatic groups where normal forms have length that is linear in the geodesic length, there is an algorithm to compute normal forms (and therefore solve the word problem) in polynomial time. The class of quasi-realtime counter-graph automatic groups includes all Baumslag-Solitar groups, and the free group of countably infinite rank. Context-sensitive-graph automatic groups are shown to be a very large class, which encompasses, for example, groups with unsolvable conjugacy problem, the Grigorchuk group, and Thompsons groups $F,T$ and $V$.
It is not known whether Thompsons group F is automatic. With the recent extensions of the notion of an automatic group to graph automatic by Kharlampovich, Khoussainov and Miasnikov and then to C-graph automatic by the authors, a compelling question
We show that the higher rank lamplighter groups, or Diestel-Leader groups $Gamma_d(q)$ for $d geq 3$, are graph automatic. This introduces a new family of graph automatic groups which are not automatic.
We consider the class of groups whose word problem is poly-context-free; that is, an intersection of finitely many context-free languages. We show that any group which is virtually a finitely generated subgroup of a direct product of free groups has
We show that the full set of solutions to systems of equations and inequations in a hyperbolic group, as shortlex geodesic words (or any regular set of quasigeodesic normal forms), is an EDT0L language whose specification can be computed in NSPACE$(n
We show that groups presented by inverse-closed finite convergent length-reducing rewriting systems are characterised by a striking geometric property: their Cayley graphs are geodetic and side-lengths of non-degenerate triangles are uniformly bounde