ﻻ يوجد ملخص باللغة العربية
It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such viscous liquid state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.
A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equat
In a companion paper [Pitrou, Phys. Rev. E 97, 043115 (2018)], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the difference
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a vi
The formation dynamics is studied for a singular profile of a surface of an ideal conducting fluid in an electric field. Self-similar solutions of electrohydrodynamic equations describing the fundamental process of formation of surface conic cusps wi
This letter presents a theory on the coalescence of two spherical liquid droplets that are initially stationary. The evolution of the radius of a liquid neck formed upon coalescence was formulated as an initial value problem and then solved to yield