ﻻ يوجد ملخص باللغة العربية
A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwells equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range $10^{10} , mathrm{W/cm^{2}}$ to $2 times 10^{15} , mathrm{W/cm^{2}}$ based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied to investigate the changes in the optical reflectance of $alpha$-quartz bulk, half-wavelength thin-film and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange--correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.
A novel approach has been developed to calculate the temperature dependence of the optical response of a semiconductor. The dielectric function is averaged over several thermally perturbed configurations that are extracted from molecular dynamic simu
All-optical spin switching is a potential trailblazer for information storage and communication at an unprecedented fast rate and free of magnetic fields. However, the current wisdom is largely based on semiempirical models of effective magnetic fiel
Coherent spin-wave generation by focused ultrashort laser pulse irradiation was investigated for a permalloy thin film at micrometer scale using an all-optical space and time-resolved magneto-optical Kerr effect. The spin-wave packet propagating perp
Magnetic resonance spectra of EuTiO3 in both bulk and thin film form were taken at temperatures from 3-350 K and microwave frequencies from 9.2-9.8 and 34 GHz. In the paramagnetic phase, magnetic resonance spectra are determined by magnetic dipole an
The performance of perovskite solar cells recently exceeded 15% solar-to-electricity conversion efficiency for small-area devices. The fundamental properties of the active absorber layers, hybrid organic-inorganic perovskites formed from mixing metal