ﻻ يوجد ملخص باللغة العربية
With upcoming all sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based AGN selection will enable the construction of highly-complete catalogs with minimum contamination. In this study, we generate $g$-band difference images and construct light curves for QSO/AGN candidates listed in SDSS Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image light curves, we explore several light curve statistics and parameterize optical variability by the characteristic damping timescale ($tau$) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically-extended sources using their difference image light curves for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of 6) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.
Over the last decade, quasar sample sizes have increased from several thousand to several hundred thousand, thanks mostly to SDSS imaging and spectroscopic surveys. LSST, the next-generation optical imaging survey, will provide hundreds of detections
Astrophysical observations currently provide the only robust, empirical measurements of dark matter. In the coming decade, astrophysical observations will guide other experimental efforts, while simultaneously probing unique regions of dark matter pa
We have developed two metrics related to AGN variability observables (time-lags, periodicity, and Structure Function (SF)) to evaluate LSST OpSim FBS 1.5, 1.6, 1.7 performance in AGN time-domain analysis. For this purpose, we generate an ensemble of
A community meeting on the topic of Radio Astronomy in the LSST Era was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the t
This paper has been withdrawn.