ﻻ يوجد ملخص باللغة العربية
Background: Simulated nucleotide or amino acid sequences are frequently used to assess the performance of phylogenetic reconstruction methods. BEAST, a Bayesian statistical framework that focuses on reconstructing time-calibrated molecular evolutionary processes, supports a wide array of evolutionary models, but lacked matching machinery for simulation of character evolution along phylogenies. Results: We present a flexible Monte Carlo simulation tool, called piBUSS, that employs the BEAGLE high performance library for phylogenetic computations within BEAST to rapidly generate large sequence alignments under complex evolutionary models. piBUSS sports a user-friendly graphical user interface (GUI) that allows combining a rich array of models across an arbitrary number of partitions. A command-line interface mirrors the options available through the GUI and facilitates scripting in large-scale simulation studies. Analogous to BEAST model and analysis setup, more advanced simulation options are supported through an extensible markup language (XML) specification, which in addition to generating sequence output, also allows users to combine simulation and analysis in a single BEAST run. Conclusions: piBUSS offers a unique combination of flexibility and ease-of-use for sequence simulation under realistic evolutionary scenarios. Through different interfaces, piBUSS supports simulation studies ranging from modest endeavors for illustrative purposes to complex and large-scale assessments of evolutionary inference procedures. The software aims at implementing new models and data types that are continuously being developed as part of BEAST/BEAGLE.
We here propose to model active and cumulative cases data from COVID-19 by a continuous effective model based on a modified diffusion equation under Lifshitz scaling with a dynamic diffusion coefficient. The proposed model is rich enough to capture d
The inverse Potts problem to infer a Boltzmann distribution for homologous protein sequences from their single-site and pairwise amino acid frequencies recently attracts a great deal of attention in the studies of protein structure and evolution. We
We show how to analytically derive the average sequence dissimilarity (ASD) within and between species under a simplified multi-species coalescent setup.
We examine Kreps (2019) conjecture that optimal expected utility in the classic Black--Scholes--Merton (BSM) economy is the limit of optimal expected utility for a sequence of discrete-time economies that approach the BSM economy in a natural sense:
Under the multispecies coalescent model of molecular evolution, gene trees have independent evolutionary histories within a shared species tree. In comparison, supermatrix concatenation methods assume that gene trees share a single common genealogica