ترغب بنشر مسار تعليمي؟ اضغط هنا

A Computational Trichotomy for Connectivity of Boolean Satisfiability

221   0   0.0 ( 0 )
 نشر من قبل Konrad W. Schwerdtfeger
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. studied connectivity properties of the solution graph and related complexity issues for CSPs, motivated mainly by research on satisfiability algorithms and the satisfiability threshold. They proved dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question. Building on this work, we here prove the trichotomy: Connectivity is either in P, coNP-complete, or PSPACE-complete. Also, we correct a minor mistake of Gopalan et al., which leads to a slight shift of the boundaries towards the hard side.



قيم البحث

اقرأ أيضاً

For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. For this implicitly define d graph, we here study the st-connectivity and connectivity problems. Building on the work of Gopalan et al. (The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies, 2006/2009), we first investigate satisfiability problems given by CSPs, more exactly CNF(S)-formulas with constants (as considered in Schaefers famous 1978 dichotomy theorem); we prove a computational dichotomy for the st-connectivity problem, asserting that it is either solvable in polynomial time or PSPACE-complete, and an aligned structural dichotomy, asserting that the maximal diameter of connected components is either linear in the number of variables, or can be exponential; further, we show a trichotomy for the connectivity problem, asserting that it is either in P, coNP-complete, or PSPACE-complete. Next we investigate two important variants: CNF(S)-formulas without constants, and partially quantified formulas; in both cases, we prove analogous dichotomies for st-connectivity and the diameter; for for the connectivity problem, we show a trichotomy in the case of quantified formulas, while in the case of formulas without constants, we identify fragments of a possible trichotomy. Finally, we consider the connectivity issues for B-formulas, which are arbitrarily nested formulas built from some fixed set B of connectives, and for B-circuits, which are Boolean circuits where the gates are from some finite set B; we prove a common dichotomy for both connectivity problems and the diameter; for partially quantified B-formulas, we show an analogous dichotomy.
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. st udied connectivity properties of the solution graph and related complexity issues for CSPs, motivated mainly by research on satisfiability algorithms and the satisfiability threshold. They proved dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question. Recently, we were able to establish the trichotomy [arXiv:1312.4524]. Here, we consider connectivity issues of satisfiability problems defined by Boolean circuits and propositional formulas that use gates, resp. connectives, from a fixed set of Boolean functions. We obtain dichotomies for the diameter and the two connectivity problems: on one side, the diameter is linear in the number of variables, and both problems are in P, while on the other side, the diameter can be exponential, and the problems are PSPACE-complete. For partially quantified formulas, we show an analogous dichotomy.
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. Motivated by research on h euristics and the satisfiability threshold, Gopalan et al. in 2006 studied connectivity properties of the solution graph and related complexity issues for constraint satisfaction problems in Schaefers framework. They found dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question that we recently were able to prove. While Gopalan et al. considered CNF(S)-formulas with constants, we here look at two important variants: CNF(S)-formulas without constants, and partially quantified formulas. For the diameter and the st-connectivity question, we prove dichotomies analogous to those of Gopalan et al. in these settings. While we cannot give a complete classification for the connectivity problem yet, we identify fragments where it is in P, where it is coNP-complete, and where it is PSPACE-complete, in analogy to Gopalan et al.s trichotomy.
86 - Bernd. R. Schuh 2020
The paper explores the correspondence between balanced incomplete block designs (BIBD) and certain linear CNF formulas by identifying the points of a block design with the clauses of the Boolean formula and blocks with Boolean variables. Parallel cla sses in BIBDs correspond to XSAT solutions in the corresponding formula. This correspondence allows for transfers of results from one field to the other. As a new result we deduce from known satisfiability theorems that the problem of finding a parallel class in a partially balanced incomplete block design is NP-complete.
Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Constraint Satisfaction Problems (CSPs) where each predicate has a strong and a weak form and given a CSP instance, the objective is to distinguish if the strong form can be sat isfied vs. even the weak form cannot be satisfied. Since their formal introduction by Austrin, Guruswami, and Haa stad, there has been a flurry of works on PCSPs [BBKO19,KO19,WZ20]. The key tool in studying PCSPs is the algebraic framework developed in the context of CSPs where the closure properties of the satisfying solutions known as the polymorphisms are analyzed. The polymorphisms of PCSPs are much richer than CSPs. In the Boolean case, we still do not know if dichotomy for PCSPs exists analogous to Schaefers dichotomy result for CSPs. In this paper, we study a special case of Boolean PCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have the predicate $x leq y$. In the algebraic framework, this is the special case of Boolean PCSPs when the polymorphisms are monotone functions. We prove that Boolean Ordered PCSPs exhibit a computational dichotomy assuming the Rich 2-to-1 Conjecture [BKM21] which is a perfect completeness surrogate of the Unique Games Conjecture. Assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP can be solved in polynomial time if for every $epsilon>0$, it has polymorphisms where each coordinate has Shapley value at most $epsilon$, else it is NP-hard. The algorithmic part of our dichotomy is based on a structural lemma that Boolean monotone functions with each coordinate having low Shapley value have arbitrarily large threshold functions as minors. The hardness part proceeds by showing that the Shapley value is consistent under a uniformly random 2-to-1 minor. Of independent interest, we show that the Shapley value can be inconsistent under an adversarial 2-to-1 minor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا