ﻻ يوجد ملخص باللغة العربية
This paper proposes a new method for the K-armed dueling bandit problem, a variation on the regular K-armed bandit problem that offers only relative feedback about pairs of arms. Our approach extends the Upper Confidence Bound algorithm to the relative setting by using estimates of the pairwise probabilities to select a promising arm and applying Upper Confidence Bound with the winner as a benchmark. We prove a finite-time regret bound of order O(log t). In addition, our empirical results using real data from an information retrieval application show that it greatly outperforms the state of the art.
We study the $K$-armed dueling bandit problem, a variation of the standard stochastic bandit problem where the feedback is limited to relative comparisons of a pair of arms. We introduce a tight asymptotic regret lower bound that is based on the info
We study the K-armed dueling bandit problem, a variation of the standard stochastic bandit problem where the feedback is limited to relative comparisons of a pair of arms. The hardness of recommending Copeland winners, the arms that beat the greatest
Contextual Bandits find important use cases in various real-life scenarios such as online advertising, recommendation systems, healthcare, etc. However, most of the algorithms use flat feature vectors to represent context whereas, in the real world,
We consider the problem of near-optimal arm identification in the fixed confidence setting of the infinitely armed bandit problem when nothing is known about the arm reservoir distribution. We (1) introduce a PAC-like framework within which to derive
In this paper, the method UCB-RS, which resorts to recommendation system (RS) for enhancing the upper-confidence bound algorithm UCB, is presented. The proposed method is used for dealing with non-stationary and large-state spaces multi-armed bandit